Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Insight Global
London
5 days ago
Create job alert

Insight Global’s client is looking for a Senior Data Engineer to join their Finance and Operations team, responsible for designing and maintaining Azure-based data pipelines and APIs, building and optimizing ETL processes, managing large datasets, troubleshooting data issues, and documenting technical solutions. The ideal candidate will have strong coding skills in Python and SQL, experience with dbt, Azure DevOps, and CI/CD best practices, and a solid understanding of data warehousing principles. Success in this role requires excellent communication, a collaborative mindset, and proactive problem-solving to mitigate blockers and deliver scalable solutions. Candidates with experience in tools like Snowflake, Airflow, or Terraform, familiarity with infrastructure as code, and exposure to financial and operational data domains will stand out. This is a full-time onsite position in our London office, working closely with global teams to ensure data quality, automation, and continuous improvement.


Please note, this is a 6 month contract-to-hire position and would require you to be on-site 5 days a week out of the London office.


Day to Day:

  • Develop and maintain Azure-based data pipelines for Finance and Operations.
  • Build and optimize ETL workflows using SQL and dbt.
  • Write Python scripts for data transformation and automation.
  • Deploy infrastructure as code and manage cloud data solutions.
  • Collaborate with project managers and contractors across global teams.
  • Ensure data quality and compliance with best practices.
  • Troubleshoot and resolve data-related issues promptly.
  • Document technical solutions and maintain test scripts.


Must Haves:

  • Strong experience in data engineering.
  • Expertise in Azure (cloud platform)
  • SQL (advanced ETL and query optimization)
  • dbt (data transformation pipelines)
  • Python (data transformation and automation scripts)
  • Azure DevOps / GitHub (CI/CD pipelines, source control)
  • Data warehousing and ETL best practices


Plusses:

  • Experience with similar tools or technologies (e.g., Snowflake, Airflow, Terraform)
  • Familiarity with infrastructure as code
  • Ability to participate in architectural decisions
  • Strong problem-solving and continuous improvement mindset

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.

Why Data Engineering Careers in the UK Are Becoming More Multidisciplinary

For many years, data engineering in the UK meant designing pipelines, moving data between systems, and ensuring analysts had what they needed. Today, the field is expanding. With cloud platforms, machine learning, real-time analytics and the explosion of sensitive personal data, employers expect data engineers to do much more. Modern data engineering is no longer just about code and storage. It requires legal awareness, ethical judgement, psychological insight, linguistic clarity and human-centred design. These disciplines shape how data is collected, processed, explained and trusted. In this article, we’ll explore why data engineering careers in the UK are becoming more multidisciplinary, how law, ethics, psychology, linguistics & design now influence job descriptions, and what job-seekers & employers must do to thrive.

Data Engineering Team Structures Explained: Who Does What in a Modern Data Engineering Department

Data has become the lifeblood of modern organisations. Every sector in the UK—finance, healthcare, retail, government, technology—is increasingly relying on insights derived from data to drive decisions, deliver products, and improve operations. But raw data on its own isn’t enough. To make data useful, reliable, secure, and scalable, companies must build strong data engineering teams. If you’re recruiting for data engineering or seeking a role, understanding the structure of such a team and who does what is essential. This article breaks down the typical roles in a modern data engineering department, how they collaborate, required skills and qualifications, expected UK salaries, common challenges, and advice on structuring and growing a data engineering team.