Azure Data Manager

London
3 weeks ago
Create job alert

Azure Data Manager

Perm

London

£75,000pa - £85,000pa

Role Summary

The Data Engineer Manager is responsible drive the design, development, and optimization of data solutions in the data infrastructure. In addition to fostering the growth of a skilled team, you will play a pivotal role in delivering the data applications, infrastructure, and services, ensuring they align with organizational goals and industry best practices.

As part of the Technology Hub the Data Engineer Manager will work very closely with all teams across the business. The role is instrumental in defining and upholding a clear vision for the integrity of data life cycle management aligning the strategic goal of becoming a centre of expertise. Additionally, it ensures stewardship of business data and technical architecture, fostering innovation and reliability across all data initiatives.

Key Responsibilities



Mentor the data engineering team to design and implement complex, tailored data solutions that support processing of high volumes of data across all schemes and applications.

*

Establish and support the technical vision and strategy for a robust data architecture that aligns with the overall strategy, with a strong focus on ensuring security for all structured data.

*

Establish and maintain robust operational support and monitoring systems to ensure the reliable performance of critical systems in live environments.

*

Facilitate the adoption and implementation of continuous delivery practices while advocating for the use of cloud solutions.

*

Design, implement, and optimize end-to-end data pipelines and solutions on Azure, ensuring data quality, reliability, and security throughout. Oversee the integration of both structured and unstructured data sources.

*

Oversee project timelines, scope, and deliverables to ensure successful execution, while actively monitoring progress and addressing risks proactively.

*

Implement best practices for process improvements, cost optimization and monitoring.

*

Continuously evaluate and improve the Azure data platform to enhance performance and scalability.

*

Collaborate with stakeholders to understand business requirements and translate them into technical solutions.

*

Develop and implement a comprehensive data governance framework to ensure data quality, security, and compliance across the data applications.

*

Design, evaluate impacts, perform technical design reviews, and approve technical designs as part of the design authority process.

*

Establish and maintain comprehensive documentation for all data engineering processes, pipelines, and systems.

*

Implement best practices for maintaining version control and traceability of documentation.

*

Foster continuous learning and adoption of the latest technologies while mentoring and training the data engineering team.

Key Requirements

Essential:

*

Minimum 6 years’ experience in Data Engineering, Data Architecture & Governance frameworks.

*

Minimum 4 years' experience with Python, preferably PySpark.

*

Experience leading small teams of Engineers.

*

Excellent communication and stakeholder management abilities.

*

Strong expertise in Azure: ADLS, Databricks, Stream Analytics, SQL DW, Synapse, Databricks, Azure Functions, Serverless Architecture, ARM T emplates, DevOps.

*

Hands-on experience with ETL/ELT processes and data warehousing.

*

Solid understanding of data security and compliance standards.

*

Experience with DevOps practices and tools (e.g., CI/CD pipelines, Azure DevOps).

*

The ability to simplify complex technical issues for a non-technical stakeholder audience.

*

Capable of understanding business needs and requirements while providing valuable, insightful recommendations.

*

Skilled in delivering presentations and technical reports clearly and persuasively

Related Jobs

View all jobs

Data & BI Manager - Azure / Ml / AI

Datawarehouse Manager (ERP, Manufacturing, Azure, Cloud)

Datawarehouse ERP Lead (Informatica, Azure Cloud, ETL, SQL, BI)

Data Analytics Manager

Data Warehouse Manager

Data Engineer Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering vs. Data Science vs. Data Analytics Jobs: Which Path Should You Choose?

In the modern data-driven era, businesses in every sector—retail, finance, healthcare, and beyond—are constantly gathering large volumes of information to power insights and fuel decision-making. Consequently, the demand for data professionals has skyrocketed, with Data Engineering jobs in particular experiencing rapid growth. However, many job seekers remain unsure about how Data Engineering differs from Data Science or Data Analytics, or which role aligns best with their interests and career aspirations. This comprehensive guide will demystify the key differences among Data Engineering, Data Science, and Data Analytics. We’ll explore overlapping and distinctive skills, delve into typical job responsibilities, discuss salary ranges, and provide real-world examples of each role in action. By the end, you’ll have a clearer understanding of which path might suit you best. And when you’re ready to move forward, visit www.dataengineeringjobs.co.uk to explore the latest vacancies and take the next step in your data-focused career.

Data Engineering Programming Languages for Job Seekers: Which Should You Learn First to Launch Your Career?

In an era where data is fueling decision-making and driving innovation across industries, data engineering has emerged as a pivotal career path. Rather than just collecting and storing information, data engineers design and maintain sophisticated pipelines that transport, transform, and store massive datasets—enabling data scientists, analysts, and business teams to glean meaningful insights. If you’re researching opportunities on www.dataengineering.co.uk, you may be wondering: “Which programming language should I learn first for a career in data engineering?” It’s a great question. Data engineering spans a wide range of tasks—ETL pipelines, real-time streaming, data warehousing, big data frameworks, and more—requiring a versatile toolset. Languages like SQL, Python, Scala, Java, Go, and R each play unique roles in building robust data infrastructures. In this guide, you’ll discover: Detailed overviews of the top programming languages in data engineering. Pros, cons, and industry relevance for each language. A simple beginner’s project to sharpen your data engineering skills. Essential resources and tips to help you thrive in the job market.

UK Visa & Work Permits Explained: Your Essential Guide for International Data Engineering Talent

Data engineering has become a foundational pillar for organisations seeking to leverage their data assets effectively. From building robust data pipelines and integrating real-time analytics to migrating entire infrastructures to the cloud, skilled data engineers drive innovation and growth. In the United Kingdom, demand for data engineering professionals spans multiple sectors, including finance, healthcare, retail, tech start-ups, and government services. However, if you’re an international data engineering specialist looking to build or advance your career in the UK, one critical step stands before you: navigating the visa and work permit landscape. This comprehensive guide breaks down key visa routes, eligibility criteria, and practical steps to help you secure employment and settle into the UK’s thriving data ecosystem. Whether you specialise in ETL processes, big data platforms, or cloud infrastructure, understanding the UK visa system is the first step toward realising your ambitions.