Data & AI Solution Architect, Azure, Remote

Manchester Square
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Architect

AI & Advanced Analytics Consultant

Enterprise Data Architect

Data Architect & Data Lead

Data Security Engineer

Data Engineer

Data & AI Architect, Azure AI Services, PaaS, ETL, Data Modelling, Remote

Data & AI Architect / Microsoft Stack / Azure required to work for a fast growing Enterprise business based in Central London. However, this will be a remote role and you may have the odd meeting in London, along with some global travel (all expenses paid).

This role will be working at the forefront of AI and we need this candidate to not only have the Data Architecture experience within a Microsoft Stack environment, but we need you to have done some relevant AI solution designing too. We need you to understand Data, the Data Concepts, Natural Language Intelligence, the Deployment of off the shelf technologies etc. Ultimately, we need you to be passionate about Microsoft Technologies, AI and Data! Read on for more details…

Role responsibilities:

  • Tertiary qualifications in Information Technology, Data Science, AI, or related fields; qualifications in Architecture and Project Management are desirable.

  • A minimum of three (3) years in a senior technical role focused on data and AI, such as technical lead, team lead, or architect.

  • Knowledge of Enterprise Architecture methodologies, such as TOGAF, with a focus on data and AI.

  • Experience in assessing data and AI solutions, particularly in Business Intelligence and Data Analytics.

  • Excellent communication skills to explain data and AI concepts to non-technical audiences. Fluency in English; other languages are a plus.

  • Strong planning and organizational skills, with the ability to communicate across various levels of stakeholders.

  • Self-starter with the ability to prioritize and plan complex data and AI work in a rapidly changing environment.

  • Results-oriented with the ability to deliver data and AI solutions that provide organizational benefits.

  • Strong critical thinker with problem-solving aptitude in data and AI contexts.

  • Team player with experience leading cross-functional teams to deliver data and AI solutions.

  • Ability to develop data and AI architecture designs; experience with Service-Oriented Architectures (SOA) and AI frameworks.

  • Available to work flexible hours, with strong collaboration, communication, and business relationship skills.

  • Expert skill level experience with the following technologies:

    • Azure AI Services

    • Azure PaaS Data Services

    • Object Oriented Analysis and Design

    • CI/CD and source control

    • ETL techniques and principles

    • Data modelling

    • Master Data Management

    • Data Visualization

  • Experienced in building Microsoft AI Services

  • Reporting and analytics solutions in the Microsoft Azure ecosystem

    This is a great opportunity and salary is dependent upon experience. Apply now for more details

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.