Data Engineer

Virtusa
City of London
1 day ago
Create job alert
Job Description

  • Implement large-scale data ecosystems including data management, governance and the integration of structured and unstructured data to generate insights leveraging cloud-based platforms
    Leverage automation, cognitive and science based techniques to manage data, predict scenarios and prescribe actions
  • Drive operational efficiency by maintaining their data ecosystems, sourcing analytics expertise and providing As a Service offerings for continuous insights and improvements
    Help to define, communicate and promote best practices for public cloud application development across our diverse set of clients.
  • Develop software and tooling to secure and automate cloud infrastructure and software delivery capabilities.
  • Design and operation of an environment for container management
  • Partner with colleagues from across technology and business to ensure an outstanding experience for development teams building and deploying their applications into public cloud environments.
    Create user acceptance testing and performance testing plans.

About Virtusa

Teamwork, quality of life, professional and personal development: values that Virtusa is proud to embody. When you join us, you join a team of 21,000 people globally that cares about your growth — one that seeks to provide you with exciting projects, opportunities and work with state of the art technologies throughout your career with us.


Great minds, great potential: it all comes together at Virtusa. We value collaboration and the team environment of our company, and seek to provide great minds with a dynamic place to nurture new ideas and foster excellence.


Virtusa was founded on principles of equal opportunity for all, and so does not discriminate on the basis of race, religion, color, sex, gender identity, sexual orientation, age, non-disqualifying physical or mental disability, national origin, veteran status or any other basis covered by appropriate law. All employment is decided on the basis of qualifications, merit, and business need.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.

Maths for Data Engineering Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data engineering jobs in the UK, maths can feel like a vague requirement hiding behind phrases like “strong analytical skills”, “performance mindset” or “ability to reason about systems”. Most of the time, hiring managers are not looking for advanced theory. They want confidence with the handful of maths topics that show up in real pipelines: Rates, units & estimation (throughput, cost, latency, storage growth) Statistics for data quality & observability (distributions, percentiles, outliers, variance) Probability for streaming, sampling & approximate results (sketches like HyperLogLog++ & the logic behind false positives) Discrete maths for DAGs, partitioning & systems thinking (graphs, complexity, hashing) Optimisation intuition for SQL plans & Spark performance (joins, shuffles, partition strategy, “what is the bottleneck”) This article is written for UK job seekers targeting roles like Data Engineer, Analytics Engineer, Platform Data Engineer, Data Warehouse Engineer, Streaming Data Engineer or DataOps Engineer.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.