Data Engineer

FanDuel
Edinburgh
1 day ago
Create job alert
Data Engineer

We are looking for a Data Engineer to join our growing data engineering team and help build the pipelines and infrastructure that power analytics, machine learning, and business decision‑making across the company. In this role, you’ll contribute to the design, development, and maintenance of reliable data systems while collaborating with stakeholders to support high‑impact data use cases.


Responsibilities

  • Design, build, and maintain scalable batch and streaming data pipelines to support analytics and business operations.
  • Write clean, efficient, and well‑documented code using tools like Python, SQL, and Spark.
  • Ensure data is reliable, accurate, and delivered in a timely manner.
  • Work with data analysts, data scientists, and product managers to understand requirements and deliver actionable data solutions.
  • Translate business questions into engineering tasks and contribute to technical planning.
  • Participate in code reviews, sprint planning, and retrospectives as part of an agile team.
  • Monitor data pipelines and troubleshoot issues in a timely, systematic manner.
  • Implement data quality checks and contribute to observability and testing practices.
  • Document data sources, transformations, and architecture decisions to support long‑term maintainability.

Qualifications

  • Experience in data engineering, analytics engineering, or software engineering with a focus on data.
  • Strong SQL skills and familiarity with at least one programming language (e.g., Python, Java, or Scala).
  • Hands‑on experience with modern data tools such as Databricks, Airflow, DBT, Spark, or Kafka.
  • Understanding of data modeling concepts, data warehousing, and ETL/ELT best practices.
  • Experience working with cloud‑based data platforms (AWS, GCP, or Azure).

Preferred Qualifications

  • Experience supporting BI, analytics, or data science teams.
  • Familiarity with version control, CI/CD, and collaborative development workflows.
  • Exposure to data governance, privacy, or compliance practices.
  • Eagerness to learn new technologies and contribute to the growth of the team.

Benefits

  • An exciting and fun environment committed to driving real growth.
  • Opportunities to build really cool products that fans love.
  • Career and professional development resources to help you refine your game plan for owning and driving your career and development.
  • Be well, save well and live well – with FanDuel Total Rewards your benefits are one highlight reel after another.

Diversity, Equity and Inclusion

FanDuel is an equal opportunities employer. Diversity and inclusion in FanDuel means that we respect and value everyone as individuals. We don't tolerate bias, judgement or harassment. Our focus is on developing employees so that they reach their full potential.


FanDuel is committed to providing reasonable accommodations for qualified individuals with disabilities. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please email .


The requirements listed in our job descriptions are guidelines, not hard and fast rules. You don't have to satisfy every requirement or meet every qualification listed. If your skills are transferable and you are in the ballpark experience‑wise, we'd love to speak to you!


Location: Edinburgh, Scotland, United Kingdom


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.

Maths for Data Engineering Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data engineering jobs in the UK, maths can feel like a vague requirement hiding behind phrases like “strong analytical skills”, “performance mindset” or “ability to reason about systems”. Most of the time, hiring managers are not looking for advanced theory. They want confidence with the handful of maths topics that show up in real pipelines: Rates, units & estimation (throughput, cost, latency, storage growth) Statistics for data quality & observability (distributions, percentiles, outliers, variance) Probability for streaming, sampling & approximate results (sketches like HyperLogLog++ & the logic behind false positives) Discrete maths for DAGs, partitioning & systems thinking (graphs, complexity, hashing) Optimisation intuition for SQL plans & Spark performance (joins, shuffles, partition strategy, “what is the bottleneck”) This article is written for UK job seekers targeting roles like Data Engineer, Analytics Engineer, Platform Data Engineer, Data Warehouse Engineer, Streaming Data Engineer or DataOps Engineer.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.