Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Newcastle upon Tyne
5 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

We need a Data Engineer that is passionate about data and able to use various methods to transform raw data into useful data systems. The primary role of the Data Engineer is to combine expertise, programming skill, data science and business intelligence to extract meaningful insights from the data.

this is a great opportunity has arisen for a Data Engineer, to work within a fast-growing technology company.

The role can be fully remote with occasional visits to the Newcastle office.

Your skills and experience

Experience as a Data Engineer or in a similar role (for example Analytics Engineer, Data Analyst or BI Developer).

Key skills:

  • Strong analytic skills related to working with structured and unstructured datasets.

  • Highly organised critical thinker with a great attention to detail.

  • Exceptional communication and presentation skills in order to explain your work to people who don't understand the technical details.

  • Effective listening skills in order to understand the requirements of the business.

  • Strong problem-solving with an emphasis on product development, with the ability to come up with imaginative solutions.

  • Drive and the resilience to try new ideas if the first one doesn't work - you'll be expected to work with minimal supervision, so it's important that you're able to motivate yourself.

  • Collaborative approach and a 'go-getting' attitude, sharing ideas and finding solutions.

  • Accountable for the outcome, seeks opportunities and removes obstacles.

  • Strong planning, time management and organisational skills.

  • The ability to deliver under pressure and to tight deadlines.

  • A drive to learn and master new technologies and techniques.

    Experience in and knowledge of:

  • Data warehousing and working with and creating data architectures.

  • Building and optimizing ‘big data’ data pipelines, architectures and data sets.

  • Manipulating, processing and extracting value from large, disconnected datasets.

  • SQL database design and working with relational databases, query authoring (SQL) as well as working familiarity with a variety of databases and other

  • Build processes supporting data transformation, data structures, metadata, dependency and workload management.

  • Data models, data mining, and segmentation techniques.

  • Big data tools such as Hadoop, Spark and Kafka.

  • AWS cloud services such as RDS, EMR, S3 and Redshift.

  • Using computer languages such as Python, Java and Scala, to manipulate data and draw insights from large data sets.

  • Developing and maintaining ETL/ELT routines.

  • BI tools including PanIntelligence (desirable).

  • A variety of machine learning techniques (clustering, decision tree learning, artificial neural networks, etc.) and their real-world advantages/drawbacks.

  • Advanced statistical techniques and concepts (regression, properties of distributions, statistical tests, and proper usage, etc.) and experience with applications.

    For more information, please contact Graham Feegan

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.

Why Data Engineering Careers in the UK Are Becoming More Multidisciplinary

For many years, data engineering in the UK meant designing pipelines, moving data between systems, and ensuring analysts had what they needed. Today, the field is expanding. With cloud platforms, machine learning, real-time analytics and the explosion of sensitive personal data, employers expect data engineers to do much more. Modern data engineering is no longer just about code and storage. It requires legal awareness, ethical judgement, psychological insight, linguistic clarity and human-centred design. These disciplines shape how data is collected, processed, explained and trusted. In this article, we’ll explore why data engineering careers in the UK are becoming more multidisciplinary, how law, ethics, psychology, linguistics & design now influence job descriptions, and what job-seekers & employers must do to thrive.

Data Engineering Team Structures Explained: Who Does What in a Modern Data Engineering Department

Data has become the lifeblood of modern organisations. Every sector in the UK—finance, healthcare, retail, government, technology—is increasingly relying on insights derived from data to drive decisions, deliver products, and improve operations. But raw data on its own isn’t enough. To make data useful, reliable, secure, and scalable, companies must build strong data engineering teams. If you’re recruiting for data engineering or seeking a role, understanding the structure of such a team and who does what is essential. This article breaks down the typical roles in a modern data engineering department, how they collaborate, required skills and qualifications, expected UK salaries, common challenges, and advice on structuring and growing a data engineering team.