Data Engineer

Oxford
2 weeks ago
Create job alert

Transform Healthcare with Cutting-Edge Tech! 🚀

Position: Data Engineer (Python/Databricks) Location: Remote Salary: Up to ÂŁ80,000 + Benefits

Are you driven by a passion for health tech and innovation? Do you dream of revolutionizing clinical research through advanced technology? If so, we have an incredible opportunity for you!

Join our trailblazing team as a Data Engineer and play a pivotal role in building secure, scalable microservices that power clinical research applications. This is your chance to make a significant impact on healthcare while working with the latest advancements in data engineering.

About Us

We are a pioneering health tech company committed to transforming clinical research through innovative data solutions. Our collaborative team, which includes Frontend Developers, QA Engineers, and DevOps Engineers, creates high-performance data pipelines and REST APIs that drive AI applications and external data integrations.

Your Role

As a Data Engineer, you will:

Build and Optimize Data Pipelines: Implement high-performance data pipelines for AI applications using Databricks.
Develop REST APIs: Create seamless REST APIs for external data integrations.
Ensure Data Security: Apply protocols and standards to secure clinical data both in-motion and at-rest.
Shape Data Workflows: Utilize Databricks components like Delta Lake, Unity Catalog, and ML Flow to ensure efficient, secure, and reliable data workflows.Key Responsibilities

Data Engineering with Databricks: Design and maintain scalable data infrastructure using Databricks.
Integration with Azure Data Factory: Orchestrate and automate data movement and transformation with Azure Data Factory.
Python Development: Write clean, efficient code in Python (3.x), using frameworks like FastAPI and Pydantic.
Database Management: Design and manage relational schemas and databases, focusing on SQL and PostgreSQL.
CI/CD and Containerization: Implement CI/CD pipelines and manage container technologies for a robust development environment.
Data Modeling and ETL/ELT Processes: Develop and optimize data models, ETL/ELT processes, and data lakes to support data analytics and machine learning.Requirements

Expertise in Databricks: Proficiency with Databricks components such as Delta Lake, Unity Catalog, and ML Flow.
Azure Data Factory Knowledge: Experience with Azure Data Factory for data orchestration.
Clinical Data Security: Understanding of protocols and standards for securing clinical data.
Python Proficiency: Strong skills in Python (3.x), FastAPI, Pydantic, and Pytest.
SQL and Relational Databases: Knowledge of SQL, relational schema design, and PostgreSQL.
CI/CD and Containers: Familiarity with CI/CD practices and container technologies.
Data Modeling and ETL/ELT: Experience with data modeling, ETL/ELT processes, and data lakes.Why Join Us?

Innovative Environment: Be part of a team pushing the boundaries of health tech and clinical research.
Career Growth: Enjoy opportunities for professional development and career advancement.
Cutting-Edge Technology: Work with the latest tools and platforms in data engineering.
Impactful Work: Contribute to projects that make a real-world impact on healthcare and clinical research.If you are a versatile Data Engineer with a passion for health tech and innovation, we would love to hear from you. This is a unique opportunity to shape the future of clinical research with your expertise in data engineering.

🔬 Shape the Future of Health Tech with Us! Apply Today! 🔬

To find out more about Computer Futures please visit

Computer Futures, a trading division of SThree Partnership LLP is acting as an Employment Business in relation to this vacancy | Registered office | 8 Bishopsgate, London, EC2N 4BQ, United Kingdom | Partnership Number | OC(phone number removed) England and Wales

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.