Data Engineer

Wormholt and White City
3 days ago
Create job alert

Data Engineer - Hybrid - London / 2 or 3 days work from home
Circ £55,000 - £70,000 + Excellent Benefits Package
A fantastic opportunity is available for a Data Engineer that enjoys working in a fast paced and collaborative team playing work environment. Our client is a prestigious and successful ecommerce / wholesale business trading all over the globe. They've been expanding at a remarkable pace and as a consequence have transformed their technical landscape with leading edge solutions. Having implemented a new MS Fabric based Data platform, the need is now to scale up and deliver data driven insights and strategies right across the business globally. The Data Engineer will be joining a close knit friendly team that is the hub of our clients global data & analytics operation. The role would suit a mid-level data engineer, or a junior engineer with 2 years experience looking to take the next step up. Previous experience with MS Fabric would be beneficial but is by no means essential. Interested candidates must have experience in a similar role with MS Azure Data Platforms, Synapse, Databricks or other Cloud platforms such as AWS, GCP, Snowfake etc.
Key Responsibilities will include;

  • Design, implement, and optimize end-to-end solutions using Fabric components:
    • o Data Factory (pipelines, orchestration)
    • o Data Engineering (Lakehouse, notebooks, Apache Spark)
    • o Data Warehouse (SQL endpoints, schemas, MPP performance tuning)
    • o Real-Time Analytics (KQL databases, event ingestion)
    • o Manage and enhance OneLake architecture, delta lake tables, security policies, and data governance within Fabric.
    • o Build scalable, reusable data assets and engineering patterns that support analytics, reporting, and machine learning workloads.
  • Collaborate with data scientists, analysts, and other stakeholders to understand data requirements and deliver effective solutions.
  • Troubleshoot and resolve data-related issues in a timely manner.
    Key Experience, Skills and Knowledge:
  • Proven 2 yrs+ experience as a Data Engineer or similar role, with a strong focus on PySpark, SQL, Microsoft Azure Data platforms and Power BI an advantage
  • Proficiency in development languages suitable for intermediate-level data engineers, such as:
    • Python / PySpark: Widely used for data manipulation, analysis, and scripting.
    • SQL: Essential for querying and managing relational databases.
  • Understanding of D365 F&O Data Structures is highly desirable
  • Strong problem-solving skills and attention to detail.
  • Excellent communication and collaboration abilities.
    This is a hybrid role based in Central / West London with the flexibility to work from home 2 or 3 days per week. Salary will be dependent on experience and likely to be in the region of £55,000 - £70,000 + an attractive benefits package including bonus scheme.
    For further information, please send your CV to Wayne Young at Young's Employment Services Ltd. YES are operating as both a recruitment Agency and Recruitment Business

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data engineering in your 30s, 40s or 50s? You’re not alone. In the UK, companies of all sizes — from fintechs to government agencies, retailers to healthcare providers — are building data teams to turn vast amounts of information into insight and value. That means demand for data engineering talent remains strong, but there’s a gap between media hype and the real pathways available to mid-career professionals. This guide gives you the straight UK reality check: which data engineering roles are genuinely open to career switchers, what skills employers actually look for, how long retraining really takes and how to position your experience for success.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.

Maths for Data Engineering Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data engineering jobs in the UK, maths can feel like a vague requirement hiding behind phrases like “strong analytical skills”, “performance mindset” or “ability to reason about systems”. Most of the time, hiring managers are not looking for advanced theory. They want confidence with the handful of maths topics that show up in real pipelines: Rates, units & estimation (throughput, cost, latency, storage growth) Statistics for data quality & observability (distributions, percentiles, outliers, variance) Probability for streaming, sampling & approximate results (sketches like HyperLogLog++ & the logic behind false positives) Discrete maths for DAGs, partitioning & systems thinking (graphs, complexity, hashing) Optimisation intuition for SQL plans & Spark performance (joins, shuffles, partition strategy, “what is the bottleneck”) This article is written for UK job seekers targeting roles like Data Engineer, Analytics Engineer, Platform Data Engineer, Data Warehouse Engineer, Streaming Data Engineer or DataOps Engineer.