Data Engineer

JR United Kingdom
Belfast
1 week ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Social network you want to login/join with:

London Remote

**About the Role**

The Data Engineer will play a pivotal role in organization by designing and implementing robust data pipelines that facilitate efficient data flow and management across various platforms. This position is essential for ensuring the integrity, reliability, and accessibility of our data, which supports critical business decisions and drives insights.

**Required Skills**

- **Proficiency in PySpark and AWS:** You should have a strong command of both PySpark for data processing and AWS (Amazon Web Services) for cloud-based solutions.

- **ETL Pipeline Development:** Demonstrated experience in designing, implementing, and debugging ETL (Extract, Transform, Load) pipelines is crucial. You will be responsible for moving and transforming data from various sources to data warehouses.

- **Programming Expertise:** A solid understanding of Python, PySpark, and SQL is required to manipulate and analyze data efficiently.

- **Knowledge of Spark and Airflow:** In-depth knowledge of Apache Spark for big data processing and Apache Airflow for orchestrating complex workflows is essential for managing data pipelines.

- **Cloud-Native Services:** Experience in designing data pipelines leveraging cloud-native services on AWS to ensure scalability and reliability in data handling.

- **AWS Services:** Extensive knowledge of various AWS services, such as S3, RDS, Redshift, and Lambda, will be necessary for building and managing our data infrastructure.

- **Terraform for Deployment:** Proficient in deploying AWS resources using Terraform, ensuring that infrastructure as code is implemented effectively.

- **CI/CD Workflows:** Hands-on experience in setting up Continuous Integration and Continuous Deployment (CI/CD) workflows using GitHub Actions to automate the deployment process and enhance collaboration within the team.

**Preferred Skills**

- **Experience with Other Cloud Platforms:** Familiarity with additional cloud platforms, such as Google Cloud Platform (GCP) or Microsoft Azure, will be advantageous and broaden your impact within our data architecture.

- **Data Governance and Compliance:** Understanding of data governance frameworks and compliance standards will be beneficial as we prioritize data privacy and regulatory requirements.

We are looking for a proactive and detail-oriented Data Engineer who is passionate about working with data and driving innovation . If you have a strong technical background and a commitment to excellence, we would love to hear from you!


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data engineering in your 30s, 40s or 50s? You’re not alone. In the UK, companies of all sizes — from fintechs to government agencies, retailers to healthcare providers — are building data teams to turn vast amounts of information into insight and value. That means demand for data engineering talent remains strong, but there’s a gap between media hype and the real pathways available to mid-career professionals. This guide gives you the straight UK reality check: which data engineering roles are genuinely open to career switchers, what skills employers actually look for, how long retraining really takes and how to position your experience for success.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.

Maths for Data Engineering Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data engineering jobs in the UK, maths can feel like a vague requirement hiding behind phrases like “strong analytical skills”, “performance mindset” or “ability to reason about systems”. Most of the time, hiring managers are not looking for advanced theory. They want confidence with the handful of maths topics that show up in real pipelines: Rates, units & estimation (throughput, cost, latency, storage growth) Statistics for data quality & observability (distributions, percentiles, outliers, variance) Probability for streaming, sampling & approximate results (sketches like HyperLogLog++ & the logic behind false positives) Discrete maths for DAGs, partitioning & systems thinking (graphs, complexity, hashing) Optimisation intuition for SQL plans & Spark performance (joins, shuffles, partition strategy, “what is the bottleneck”) This article is written for UK job seekers targeting roles like Data Engineer, Analytics Engineer, Platform Data Engineer, Data Warehouse Engineer, Streaming Data Engineer or DataOps Engineer.