Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Vortexa
City of London
1 week ago
Create job alert
Vortexa – Data Engineer

Vortexa is a fast‑growing international technology company solving the information gap in the energy industry by using massive satellite data and AI to provide a real‑time view of global seaborne energy flows.


Role Overview

You will design, build, and maintain the data production pipeline that powers Vortexa’s core SaaS platform. This involves ingesting terabytes of heterogeneous data, training and running complex AI models, and serving predictions to customers worldwide.


Key Responsibilities

  • Build and operate distributed, scalable data processing pipelines using AWS, Kubernetes, and Airflow.
  • Integrate raw satellite data with text and market data to generate high‑value forecasts (destination, cargo, vessel traffic, congestion, prices, etc.).
  • Automate data ingestion, feature engineering, model training, and deployment, ensuring 100 % uptime and fault‑tolerance.
  • Collaborate closely with data scientists, software engineers, and market analysts to translate research into production‑ready solutions.
  • Implement observability – logging, monitoring, and tracing – and improve pipeline performance and reliability.
  • Coach and mentor junior team members, fostering a culture of continuous learning and technical excellence.

Required Qualifications

  • Experience building scalable backend pipelines that process terabytes of data daily.
  • Strong software engineering fundamentals; fluency in Java and Python (knowledge of Rust is a plus).
  • Hands‑on with data lake technologies (Athena, S3), big‑data formats (Parquet, ORC, HDF5), and distributed storage.
  • Deep understanding of the full SDLC – design, code, review, test, deploy, and operations.

Nice to Have

  • Experience with Apache Kafka, Flink, or similar streaming platforms.
  • Background in web scraping and information extraction.
  • Observability expertise: logging, monitoring, tracing.
  • Knowledge of cloud native tools and infrastructure as code.

Benefits & Culture

  • Equity options granted to all staff.
  • Private health insurance via Vitality.
  • Global volunteering programme.
  • Flexible hybrid work: remote and in‑office options.
  • Tech‑centric, fast‑moving environment that encourages ownership and experimentation.

Seniority & Employment

  • Mid‑Senior level
  • Full‑time
  • Location: London, England, United Kingdom (remote options)


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.

Why Data Engineering Careers in the UK Are Becoming More Multidisciplinary

For many years, data engineering in the UK meant designing pipelines, moving data between systems, and ensuring analysts had what they needed. Today, the field is expanding. With cloud platforms, machine learning, real-time analytics and the explosion of sensitive personal data, employers expect data engineers to do much more. Modern data engineering is no longer just about code and storage. It requires legal awareness, ethical judgement, psychological insight, linguistic clarity and human-centred design. These disciplines shape how data is collected, processed, explained and trusted. In this article, we’ll explore why data engineering careers in the UK are becoming more multidisciplinary, how law, ethics, psychology, linguistics & design now influence job descriptions, and what job-seekers & employers must do to thrive.

Data Engineering Team Structures Explained: Who Does What in a Modern Data Engineering Department

Data has become the lifeblood of modern organisations. Every sector in the UK—finance, healthcare, retail, government, technology—is increasingly relying on insights derived from data to drive decisions, deliver products, and improve operations. But raw data on its own isn’t enough. To make data useful, reliable, secure, and scalable, companies must build strong data engineering teams. If you’re recruiting for data engineering or seeking a role, understanding the structure of such a team and who does what is essential. This article breaks down the typical roles in a modern data engineering department, how they collaborate, required skills and qualifications, expected UK salaries, common challenges, and advice on structuring and growing a data engineering team.