Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

ATG (Auction Technology Group)
City of London
3 days ago
Create job alert

You have a passion for building scalable, reliable data systems that enable data scientists, ML engineers, and analysts to do their best work. You understand that great data products require more than just moving data; they need robust pipelines, data quality assurance, and thoughtful architecture. Not only do you put reliability and scalability at the heart of everything you do, but you are adept at enabling data-driven decisions through proper data modeling and pipeline design. You will be comfortable working cross-functionally with Product, Engineering, Data Science, Analytics, and MLOps teams to develop our products and improve the end-user experience. You should have a strong track record of successful prioritization, meeting critical deadlines, and enthusiastically tackling challenges with an eye toward problem solving.


Key Responsibilities

  • Data Pipeline Development & Management
  • Design, build, and maintain robust ETL/ELT pipelines that support analytics, ML models, and business intelligence
  • Develop scalable batch and streaming data pipelines to process millions of auction events, user interactions, and transactions daily
  • Implement workflow orchestration using Airflow, Dagster, or similar tools to manage complex data dependencies
  • Build data validation and quality monitoring frameworks to ensure data accuracy and reliability
  • ML & Analytics Infrastructure
  • Build feature engineering pipelines to support ML models for search, recommendations, and personalization
  • Integrate with feature stores to enable consistent feature computation across training and inference
  • Create datasets for model training, validation, and testing with proper versioning
  • Data Quality & Monitoring
  • Implement comprehensive data quality checks, anomaly detection, and alerting systems
  • Monitor pipeline health, data freshness, and SLA compliance
  • Create dashboards and reporting tools for data pipeline observability
  • Debug and resolve data quality issues and pipeline failures
  • Collaboration & Best Practices
  • Work closely with Data Scientists and ML Engineers to understand data requirements and deliver reliable datasets
  • Partner with Software Engineers to integrate data pipelines with application systems
  • Establish and document data engineering best practices, coding standards, and design patterns
  • Mentor junior engineers on data engineering principles and best practices

Key Requirements

  • Required Qualifications: BSc or MSc in Computer Science, Data Engineering, Software Engineering, or a related field, or equivalent practical experience
  • 5+ years of experience building and maintaining data pipelines and infrastructure in production environments
  • Strong programming skills in Python, with experience in data processing libraries (Pandas, PySpark)
  • Expert-level SQL skills with experience in query optimization and performance tuning
  • Proven experience with workflow orchestration tools (Airflow, Dagster, Prefect, or similar)
  • Hands‑on experience with cloud platforms (AWS preferred) including S3, Redshift, EMR, Glue, Lambda
  • Experience with data warehousing solutions (Redshift, Snowflake, BigQuery, or similar)
  • Experience with version control systems (Git) and CI/CD practices for data pipelines

Technical Skills

  • Experience with distributed computing frameworks (Apache Spark, Dask, or similar)
  • Knowledge of both batch and streaming data processing (Kafka, Kinesis, or similar)
  • Familiarity with data formats (Parquet, ORC, Avro, JSON) and their trade-offs
  • Understanding of data quality frameworks and testing strategies
  • Previous work with vector databases (Pinecone, Milvus, etc)
  • Experience with monitoring and observability tools (Prometheus, Grafana, CloudWatch)
  • Knowledge of infrastructure-as-code tools (Terraform, CloudFormation)
  • Understanding of containerization (Docker) and orchestration (Kubernetes) is a plus

Nice-to-Have

  • Familiarity with dbt (data build tool) for data transformation workflows
  • Knowledge of Elasticsearch or similar search technologies
  • Experience in eCommerce, marketplace, or auction platforms
  • Understanding of GDPR, data privacy, and compliance requirements
  • Experience with real-time analytics and event-driven architectures (Flink, Materialize)


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the data engineering jobs market in the UK is evolving fast. Almost every organisation is talking about AI, analytics & data-driven decision making – but behind all that sits the data engineering function. Cloud costs, complex data estates, stricter regulation & the explosion of AI workloads are all changing how data platforms are built & run. Some companies are tightening budgets & consolidating teams, while others are doubling down on modern data stacks, lakehouses & real-time pipelines. Whether you are a data engineering job seeker planning your next move, or a recruiter building data teams, understanding the key data engineering hiring trends for 2026 will help you stay ahead. This guide mirrors the structure of your AI, biotech, blockchain, cloud & cyber articles, & is written with SEO in mind for both job seekers & recruiters searching for terms like “data engineering hiring trends 2026”, “data engineering jobs in the UK”, “data engineer recruitment UK” & “modern data stack roles 2026”.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.

Why Data Engineering Careers in the UK Are Becoming More Multidisciplinary

For many years, data engineering in the UK meant designing pipelines, moving data between systems, and ensuring analysts had what they needed. Today, the field is expanding. With cloud platforms, machine learning, real-time analytics and the explosion of sensitive personal data, employers expect data engineers to do much more. Modern data engineering is no longer just about code and storage. It requires legal awareness, ethical judgement, psychological insight, linguistic clarity and human-centred design. These disciplines shape how data is collected, processed, explained and trusted. In this article, we’ll explore why data engineering careers in the UK are becoming more multidisciplinary, how law, ethics, psychology, linguistics & design now influence job descriptions, and what job-seekers & employers must do to thrive.