Data Engineer

myGwork - LGBTQ+ Business Community
Manchester
5 days ago
Create job alert
Overview

This job is with Capgemini, an inclusive employer and a member of myGwork – the largest global platform for the LGBTQ+ business community. Please do not contact the recruiter directly. Get the future you want!

Choosing Capgemini means choosing a company where you will be empowered to shape your career in the way you’d like, where you’ll be supported and inspired by a collaborative community of colleagues around the world, and where you’ll be able to reimagine what’s possible. Join us and help the world’s leading organizations unlock the value of technology and build a more sustainable, more inclusive world.

Your role

Provides advanced data solutions by using software to process, store, and serve data to others. Tests data quality and optimizes data availability. Ensures that data pipelines are scalable, repeatable, and secure. Utilizes a deep dive analytical skillset on a variety of internal and external data.

Your profile
  • Writes ETL (Extract / Transform / Load) processes, designs database systems, and develops tools for real-time and offline analytic processing.
  • Troubleshoots software and processes for data consistency and integrity. Integrates large scale data from a variety of sources for business partners to generate insight and make decisions.
  • Translates business specifications into design specifications and code. Responsible for writing complex programs, ad hoc queries, and reports. Ensures that all code is well structured, includes sufficient documentation, and is easy to maintain and reuse.
  • Partners with internal clients to gain an enhanced understanding of business functions and informational needs. Gains expertise in tools, technologies, and applications/databases in specific business areas and company-wide systems.
  • Leads all phases of solution development. Explains technical considerations at related meetings, including those with internal clients and less experienced team members.
  • Tests code thoroughly for accuracy of intended purpose. Reviews end product with the client to ensure adequate understanding. Provides data analysis guidance as required.
  • Designs and conducts training sessions on tools and data sources used by the team and self provisioners.
  • Provides job aids to team members and business users. Tests and implements new software releases through regression testing. Identifies issues and engages with vendors to resolve and elevate software into production. Participates in special projects and performs other duties as assigned.
Qualifications
  • Minimum of five years data analytics, programming, database administration, or data management experience.
  • Undergraduate degree or equivalent combination of training and experience.
About Capgemini

Capgemini is a global business and technology transformation partner, helping organizations to accelerate their dual transition to a digital and sustainable world, while creating tangible impact for enterprises and society. It is a responsible and diverse group of 350,000 team members in more than 50 countries. With its strong over 55-year heritage, Capgemini is trusted by its clients to unlock the value of technology to address the entire breadth of their business needs. It delivers end-to-end services and solutions leveraging strengths from strategy and design to engineering, all fueled by its market leading capabilities in AI, cloud and data, combined with its deep industry expertise and partner ecosystem. The Group reported 2023 global revenues of €22.5 billion.

Get the future you want | www.capgemini.com


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Engineering Jobs: What Universities Aren’t Teaching

Data engineering has quietly become one of the most critical roles in the modern technology stack. While data science and AI often receive the spotlight, data engineers are the professionals who design, build and maintain the systems that make data usable at scale. Across the UK, demand for data engineers continues to rise. Organisations in finance, retail, healthcare, government, media and technology all report difficulty hiring candidates with the right skills. Salaries remain strong, and experienced professionals are in short supply. Yet despite this demand, many graduates with degrees in computer science, data science or related disciplines struggle to secure data engineering roles. The reason is not academic ability. It is a persistent skills gap between university education and real-world data engineering work. This article explores that gap in depth: what universities teach well, what they consistently miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data engineering.

Data Engineering Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data engineering in your 30s, 40s or 50s? You’re not alone. In the UK, companies of all sizes — from fintechs to government agencies, retailers to healthcare providers — are building data teams to turn vast amounts of information into insight and value. That means demand for data engineering talent remains strong, but there’s a gap between media hype and the real pathways available to mid-career professionals. This guide gives you the straight UK reality check: which data engineering roles are genuinely open to career switchers, what skills employers actually look for, how long retraining really takes and how to position your experience for success.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.