Data Engineer

QAD
Birmingham
5 days ago
Create job alert

QAD Inc. is a leading provider of adaptive, cloud-based enterprise software and services for global manufacturing companies. Global manufacturers face ever-increasing disruption caused by technology-driven innovation and changing consumer preferences. In order to survive and thrive, manufacturers must be able to innovate and change business models at unprecedented rates of speed. QAD calls these companies Adaptive Manufacturing Enterprises. QAD solutions help customers in the automotive, life sciences, packaging, consumer products, food and beverage, high tech and industrial manufacturing industries rapidly adapt to change and innovate for competitive advantage.

We are looking for talented individuals who want to join us on our mission to help solve relevant real-world problems in manufacturing and the supply chain.


This role is fully remote in UK, with full work authorization already in effect. No Visa sponsorship is available.


Job Description


In a data-driven and AI-oriented environment, you will be responsible for the design, industrialization, and optimization of inter-application data pipelines. You will be involved in the entire data chain, from data ingestion to its use by data science teams and AI systems in production within a human-sized and multidisciplinary team. This role is within Process Intelligence (PI) team that combines functions such as Process Mining, Real Time Monitoring and Predictive AI


Key responsibilities:

  • Design and maintain scalable data pipelines.
  • Structure, transform, and optimize data in Snowflake.
  • Implement multi-source ETL/ELT flows (ERP, APIs, files).
  • Leverage the AWS environment, including S3, IAM, and various data services.
  • Prepare data for Data Science teams and integrate AI/ML models into production.
  • Ensure data quality, security, and governance.
  • Provide input on data architecture.


Qualifications

  • 5+ years of experience in data engineering, including significant experience in a cloud environment.
  • Snowflake (MUST HAVE): Expertise in modeling, query optimization, cost management, and security.
  • AWS: Strong knowledge of data and cloud services including S3, IAM, Glue, and Lambda.
  • Languages: Advanced SQL and Python for data manipulation, automation, and ML integration.
  • Data Engineering: Proven experience in ETL/ELT pipeline design.
  • AI/ML Integration: Ability to prepare data for model training and deploy AI models into production workflows (batch or real-time).


Nice to Have:

  • Experience with agentic AI architectures, including agent orchestration and decision loops.
  • Integration of agent-driven AI models into existing data pipelines.
  • Knowledge of modern architectures such as Lakehouse or Data Mesh.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.

Data Engineering Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the data engineering jobs market in the UK is evolving fast. Almost every organisation is talking about AI, analytics & data-driven decision making – but behind all that sits the data engineering function. Cloud costs, complex data estates, stricter regulation & the explosion of AI workloads are all changing how data platforms are built & run. Some companies are tightening budgets & consolidating teams, while others are doubling down on modern data stacks, lakehouses & real-time pipelines. Whether you are a data engineering job seeker planning your next move, or a recruiter building data teams, understanding the key data engineering hiring trends for 2026 will help you stay ahead.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.