Data Engineer

Lloyds Bank plc
Manchester
2 days ago
Create job alert

Job Title: Salary: £47,790 - £58,410 Location: Manchester Hours: Full time Working Pattern: Hybrid, 40% (or two days) in an office site Data EngineerLike the modern Britain we serve, we’re evolving. Investing billions in our people, data and tech to transform the way we meet the everchanging needs of our 26 million customers. We’re growing with purpose. Join us on our journey and you will too…Lloyds Banking Group is the UK’s leading digital franchise, with over 13 million active online customers across our three main brands - including Lloyds Bank, Halifax and Bank of Scotland - as well as the biggest mobile bank in the country. We're building the bank of the future, and we need your help. The Hive Lab has a clear purpose – to ‘unleash Agentic Intelligence and transform Operating Models with Autonomous AI Workflows’ and is committed to focussing on the latest technologies in the market and pushing the boundaries on the art of the possible through constant innovation. As a Data Engineer in the lab, you'll play a key role in building and maintaining the data backbone for our AI and analytics initiatives. You'll assist in designing, developing, and handling robust data pipelines within a cloud-native environment. You’ll work closely with data scientists and engineers to ensure the flow of high-quality data, enabling the creation of next-generation solutions. Experience in a quantitative field (Computer Science, Engineering, Mathematics, or related subject area). Strong proficiency in Python (including libraries like pandas, SQLAlchemy) and SQL for data manipulation and pipeline development.Strong problem-solving skills and the ability to work independently with sophisticated datasets. Familiarity with Git and collaborative development practices. Excellent communication skills and a collaborative attitude focused on continuous improvement. Experience with cloud platforms (GCP, Azure, or AWS) and their core data services (e.g., BigQuery, Cloud Storage, AWS S3, Glue).Familiarity with modern data stack tools such as dbt, Airflow, or similar orchestration and transformation technologies.Knowledge of data processing technologies like Spark or Hadoop. **We also offer a wide ranging benefits package, which includes…**Benefits you can adapt to your lifestyle, such as discounted shopping With 320 years under our belt, we're used to change, and today is no different. Join us and help drive this change, shaping the future of finance whilst working at pace to deliver for our customers.Here, you'll do the best work of your career. Your impact will be amplified by our scale as you learn and develop, gaining skills for the future.
#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.

Maths for Data Engineering Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data engineering jobs in the UK, maths can feel like a vague requirement hiding behind phrases like “strong analytical skills”, “performance mindset” or “ability to reason about systems”. Most of the time, hiring managers are not looking for advanced theory. They want confidence with the handful of maths topics that show up in real pipelines: Rates, units & estimation (throughput, cost, latency, storage growth) Statistics for data quality & observability (distributions, percentiles, outliers, variance) Probability for streaming, sampling & approximate results (sketches like HyperLogLog++ & the logic behind false positives) Discrete maths for DAGs, partitioning & systems thinking (graphs, complexity, hashing) Optimisation intuition for SQL plans & Spark performance (joins, shuffles, partition strategy, “what is the bottleneck”) This article is written for UK job seekers targeting roles like Data Engineer, Analytics Engineer, Platform Data Engineer, Data Warehouse Engineer, Streaming Data Engineer or DataOps Engineer.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.