Data Engineering Manager

Thurmaston
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer - Payments

Delegated Authority Data Governance & Bordereaux Manager

Data Engineer

Data Engineer

Senior Data Engineer, SQL, RDBMS, AWS, Python, Mainly Remote

We are looking for a talented, experienced and proactive Data Engineer to join our team and play a pivotal role managing our data platforms, integrating data from across the Flogas group of businesses, and providing insights and information to drive business value. This is an exciting opportunity to be at the centre of a major project to implement the Microsoft Fabric platform, working closely with Sales and Operational teams, as well as learning from Fabric consultants deploying the solution. Your work will focus on leveraging data to solve real-world challenges and deliver measurable results.

In this role, you’ll work with operational teams & customers to understand their challenges and support production of insights with provision of integrations and data to support data-driven decision-making. Acting as a key bridge between data and operations, you’ll also develop and deliver impactful Power BI dashboards that provide insight and value to both the business and its customers.

Your day-to-day will involve:

  • Managing the Fabric estate

  • Providing stable integrations

  • Ensuring good data governance

  • Ensuring visibility of data lineage whilst creating and maintaining dynamic reporting solutions

  • Defining and tracking key performance indicators (KPIs)

    You’ll also have the chance to innovate by identifying opportunities to exploit the potential and tools that come with the Microsoft Fabric technology stack. This could be automation of workflows, enhancing reporting tools, and implementing new ways of working that improve overall efficiency and effectiveness.

    Essential Skills Required:

  • Proficiency in Power Platform – especially Power Query and Power BI with experience creating dynamic dashboards and reports.

  • Proficiency in data analysis tools and software particularly, Excel, SQL, Python, Pyspark, R.

  • Knowledge/experience of data science solutions (ML, statistical analysis).

  • Experience of Data Warehousing, with Microsoft Fabric or SQL Server skills and advantage

  • Strong data storytelling and presentation skills, with the ability to simplify complex datasets into clear and actionable insights for diverse audiences.

    Knowledge / experience of having worked within the energy sector, and having an understanding of the sector specific challenges is highly advantageous.

    If you’re passionate about using data to solve problems, deliver insights, and make a real impact, we’d love to hear from you

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data engineering in your 30s, 40s or 50s? You’re not alone. In the UK, companies of all sizes — from fintechs to government agencies, retailers to healthcare providers — are building data teams to turn vast amounts of information into insight and value. That means demand for data engineering talent remains strong, but there’s a gap between media hype and the real pathways available to mid-career professionals. This guide gives you the straight UK reality check: which data engineering roles are genuinely open to career switchers, what skills employers actually look for, how long retraining really takes and how to position your experience for success.

How to Write a Data Engineering Job Ad That Attracts the Right People

Data engineering is the backbone of modern data-driven organisations. From analytics and machine learning to business intelligence and real-time platforms, data engineers build the pipelines, platforms and infrastructure that make data usable at scale. Yet many employers struggle to attract the right data engineering candidates. Job adverts often generate high application volumes, but few applicants have the practical skills needed to build and maintain production-grade data systems. At the same time, experienced data engineers skip over adverts that feel vague, unrealistic or misaligned with real-world data engineering work. In most cases, the issue is not a shortage of talent — it is the quality and clarity of the job advert. Data engineers are pragmatic, technically rigorous and highly selective. A poorly written job ad signals immature data practices and unclear expectations. A well-written one signals strong engineering culture and serious intent. This guide explains how to write a data engineering job ad that attracts the right people, improves applicant quality and positions your organisation as a credible data employer.

Maths for Data Engineering Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data engineering jobs in the UK, maths can feel like a vague requirement hiding behind phrases like “strong analytical skills”, “performance mindset” or “ability to reason about systems”. Most of the time, hiring managers are not looking for advanced theory. They want confidence with the handful of maths topics that show up in real pipelines: Rates, units & estimation (throughput, cost, latency, storage growth) Statistics for data quality & observability (distributions, percentiles, outliers, variance) Probability for streaming, sampling & approximate results (sketches like HyperLogLog++ & the logic behind false positives) Discrete maths for DAGs, partitioning & systems thinking (graphs, complexity, hashing) Optimisation intuition for SQL plans & Spark performance (joins, shuffles, partition strategy, “what is the bottleneck”) This article is written for UK job seekers targeting roles like Data Engineer, Analytics Engineer, Platform Data Engineer, Data Warehouse Engineer, Streaming Data Engineer or DataOps Engineer.