Data Governance & Privacy Specialist

Hemel Hempstead
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Junior Data Governance Analyst | £35,000 + Bonus & 10% Pension

JUNIOR DATA GOVERNANCE ANALYST

Data Engineer

Data Engineer

Data Governance Manager

Data Governance & Privacy Specialist

Location: Hybrid (Occasional travel to offices in Hemel Hempstead so must be commutable)

Contract: Outside IR35

Day rate: Up to 650 per day

Duration: 6 months+

Start date: ASAP

Key skills: CIPT, Data Protection, Data Privacy

The successful candidate will need to be Certified Information Privacy Technologist (CIPT) and have collaborated with product teams to develop a robust privacy framework, ensuring compliance while supporting product/commercial goals.

You will thrive in a collaborative environment and possess both technical aptitude and business acumen. You should be passionate about responsible data usage and able to navigate the complexities of privacy regulations while enabling business innovation.

Key Responsibilities

Serve as the liaison between the Identity Squad and our Data Protection Officer, ensuring alignment on privacy policies and data usage requirements
Develop architectural frameworks and documentation that clearly define permissible uses of customer data
Translate complex privacy, ethical, and legal requirements into actionable product features and specifications
Work backwards from product requirements to determine necessary privacy, ethical, and legal safeguards
Design solutions to address problematic guest behaviour while maintaining compliance with data protection regulations
Create documentation and guidelines for appropriate collection, storage, processing, and retention of customer identity data
Collaborate with cross-functional teams to ensure data governance practices are understood and followed
Create control and monitoring mechanisms for complex data processes to ensure compliance and context for change as required
Required Skills & Experience

Strong understanding of data protection regulations (GDPR, etc.) and privacy best practices
Certified Information Privacy Technologist (CIPT)
Experience translating legal/compliance requirements into technical specifications
Knowledge of identity management systems and customer data architectures
Excellent communication skills with ability to explain complex concepts to technical and non-technical stakeholders
Problem-solving mindset with ability to balance business needs with compliance requirements
Experience in product development or product management preferred
Understanding of ethical considerations in data usage and privacy
Proven experience in practical use of data within a digital / online product to combat or measure fraud, poor behaviour, identity theft, crime or similar

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Engineering Tools Do You Need to Know to Get a Data Engineering Job?

If you’re aiming for a career in data engineering, it can feel like you’re staring at a never-ending list of tools and technologies — SQL, Python, Spark, Kafka, Airflow, dbt, Snowflake, Redshift, Terraform, Kubernetes, and the list goes on. Scroll job boards and LinkedIn, and it’s easy to conclude that unless you have experience with every modern tool in the data stack, you won’t even get a callback. Here’s the honest truth most data engineering hiring managers will quietly agree with: 👉 They don’t hire you because you know every tool — they hire you because you can solve real data problems with the tools you know. Tools matter. But only in service of outcomes. Jobs are won by candidates who know why a technology is used, when to use it, and how to explain their decisions. So how many data engineering tools do you actually need to know to get a job? For most job seekers, the answer is far fewer than you think — but you do need them in the right combination and order. This article breaks down what employers really expect, which tools are core, which are role-specific, and how to focus your learning so you look capable and employable rather than overwhelmed.

What Hiring Managers Look for First in Data Engineering Job Applications (UK Guide)

If you’re applying for data engineering jobs in the UK, the first thing to understand is this: Hiring managers don’t read every word of your CV. They scan it. They look for signals of relevance, credibility, delivery and collaboration — and if they don’t see the right signals quickly, your application may never get a second look. In data engineering, hiring managers are especially focused on whether you can build and operate reliable, scalable data systems, handle real-world data challenges and work effectively with analytics, BI, data science and engineering teams. This guide breaks down exactly what they look at first in your application — and how to shape your CV, portfolio and cover letter so you stand out.

The Skills Gap in Data Engineering Jobs: What Universities Aren’t Teaching

Data engineering has quietly become one of the most critical roles in the modern technology stack. While data science and AI often receive the spotlight, data engineers are the professionals who design, build and maintain the systems that make data usable at scale. Across the UK, demand for data engineers continues to rise. Organisations in finance, retail, healthcare, government, media and technology all report difficulty hiring candidates with the right skills. Salaries remain strong, and experienced professionals are in short supply. Yet despite this demand, many graduates with degrees in computer science, data science or related disciplines struggle to secure data engineering roles. The reason is not academic ability. It is a persistent skills gap between university education and real-world data engineering work. This article explores that gap in depth: what universities teach well, what they consistently miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data engineering.