Data Scientist

Cramond Bridge
4 days ago
Create job alert

Join us as a Data Scientist

In this role, you’ll drive and embed the design and implementation of data science tools and methods, which harness our data to drive market-leading purpose customer solutions

Day-to-day, you’ll act as a subject matter expert and articulate advanced data and analytics opportunities, bringing them to life through data visualisation

If you’re ready for a new challenge, and are interested in identifying opportunities to support external customers by using your data science expertise, this could be the role for you

What you’ll do

We’re looking for someone to understand the requirements and needs of our business stakeholders. You’ll develop good relationships with them, form hypotheses, and identify suitable data and analytics solutions to meet their needs and to achieve our business strategy.

You’ll be maintaining and developing external curiosity around new and emerging trends within data science, keeping up to date with emerging trends and tooling and sharing updates within and outside of the team.

You’ll also be responsible for:

Developing complex Machine Learning and Natural Language Processing (NLP) models

Participating in Generative AI experiments

Proactively bringing together statistical, mathematical, machine-learning and software engineering skills to consider multiple solutions, techniques, and algorithms

Implementing ethically sound models end-to-end and applying software engineering and a product development lens to complex business problems

Working with and leading both direct reports and wider teams in an Agile way within multi-disciplinary data to achieve agreed project and Scrum outcomes

Using your data translation skills to work closely with business stakeholders to define business questions, problems or opportunities that can be supported through advanced analytics

The skills you’ll need

To be successful in this role, you’ll need evidence of project implementation and work experience gained in a data-analysis-related field as part of a multi-disciplinary team. We’ll also expect you to hold an undergraduate or a master’s degree in a quantitative discipline, or evidence of equivalent practical experience.

You’ll also need experience with statistical software, database languages, big data technologies, cloud environments and machine learning on large data sets. And we’ll look to you to bring the ability to demonstrate leadership, self-direction and a willingness to both teach others and learn new techniques. Experience within a cloud data science environment, such as AWS Sagemaker would be beneficial

Additionally, you’ll need:

Proficiency with Python and commonly used data science libraries such as pandas, scikit-learn and, langchain

Significant experience with SQL

In-depth knowledge of NLP algorithms such as topic detection, sentiment analysis and, generative models

Experience of deploying machine learning models into a production environment

Experience of articulating and translating business questions and using statistical techniques to arrive at an answer using available data

Effective verbal and written communication skills and the ability to adapt communication style to a specific audience

Extensive work experience, including expertise with statistical data analysis, such as linear models, multivariate analysis, stochastic models, and sampling methods

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Science Placement Programme

Data Science Placement Programme

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Atos Data‑Engineering Jobs in 2025: Your Complete UK Guide to Architecting the Backbone of Digital Transformation

From building the data lake that powers the 2024 Paris Olympic Games to operating one of Europe’s fastest exascale supercomputers, Atos (and its digital spin‑off Eviden) sits at the heart of large‑scale data transformation. The company’s Big Data & Security and Digital Business Platforms units design, build and run cloud‑native analytics stacks for governments, telecoms, financial services and retailers worldwide. With the split of infrastructure services into Tech Foundry and digital/AI into Eviden completed in January 2025, Atos is doubling down on data engineering talent. The Atos careers site currently lists 400+ UK vacancies, more than 150 tagged “Data & AI”. Whether you’re a Python‑Spark aficionado, an ELT wizard on Azure Synapse, or a solution architect who can turn legacy mainframe feeds into real‑time dashboards, this guide explains how to land an Atos data‑engineering job in 2025.

Data Engineering vs. Data Science vs. Data Analytics Jobs: Which Path Should You Choose?

In the modern data-driven era, businesses in every sector—retail, finance, healthcare, and beyond—are constantly gathering large volumes of information to power insights and fuel decision-making. Consequently, the demand for data professionals has skyrocketed, with Data Engineering jobs in particular experiencing rapid growth. However, many job seekers remain unsure about how Data Engineering differs from Data Science or Data Analytics, or which role aligns best with their interests and career aspirations. This comprehensive guide will demystify the key differences among Data Engineering, Data Science, and Data Analytics. We’ll explore overlapping and distinctive skills, delve into typical job responsibilities, discuss salary ranges, and provide real-world examples of each role in action. By the end, you’ll have a clearer understanding of which path might suit you best. And when you’re ready to move forward, visit www.dataengineeringjobs.co.uk to explore the latest vacancies and take the next step in your data-focused career.

Data Engineering Programming Languages for Job Seekers: Which Should You Learn First to Launch Your Career?

In an era where data is fueling decision-making and driving innovation across industries, data engineering has emerged as a pivotal career path. Rather than just collecting and storing information, data engineers design and maintain sophisticated pipelines that transport, transform, and store massive datasets—enabling data scientists, analysts, and business teams to glean meaningful insights. If you’re researching opportunities on www.dataengineering.co.uk, you may be wondering: “Which programming language should I learn first for a career in data engineering?” It’s a great question. Data engineering spans a wide range of tasks—ETL pipelines, real-time streaming, data warehousing, big data frameworks, and more—requiring a versatile toolset. Languages like SQL, Python, Scala, Java, Go, and R each play unique roles in building robust data infrastructures. In this guide, you’ll discover: Detailed overviews of the top programming languages in data engineering. Pros, cons, and industry relevance for each language. A simple beginner’s project to sharpen your data engineering skills. Essential resources and tips to help you thrive in the job market.