DV Cleared Data Engineers Needed – Consultancy – AWS

Bristol
4 days ago
Create job alert

DV Cleared Data Engineers Needed – Consultancy – AWS

I’m looking for DV Cleared Data Engineers at all career levels to join a successful, multinational Consultancy across the UK in either their Bristol, Manchester or Belfast offices working on high profile client projects.

As a Data Engineer, you'll design and implement cutting-edge data solutions that transform the clients' businesses. You'll work with cross-functional teams to create scalable, efficient architectures that turn complex data challenges into opportunities for innovation.

Your role

  • Design end-to-end data architectures that align with business objectives

  • Create cloud-native solutions leveraging PaaS, serverless, and container technologies

  • Build robust data pipelines for both batch and streaming processes

  • Collaborate with clients to understand their data landscape and requirements

    To be considered you will be able to demonstrate skills and experience in many of the following:

  • Expertise in designing production-grade data pipelines using Python, Scala, Spark, and SQL

  • Deep knowledge of AWS Cloud Platforms (EMR, Glue, Redshift, Kinesis, Lambda, DynamoDB)

  • Experience with data processing across structured and unstructured sources

  • Strong scripting abilities and API integration skills

  • Knowledge of data visualization and reporting best practices

    Desirable but not essential:

  • Experience with data mining and machine learning

  • Natural language processing expertise

  • Multi-cloud platform experience

    They work within an Agile environment with Scrum practices, cross-functional collaborative teams and need someone who can work from the office 2 days a week.

    Salary: £50,000 - £70,000 + 25 days holiday (option to buy 5 more) + pension + Performance Bonus + share options

    Location: Hybrid working – 2 days a week in the office (Bristol, Manchester or Belfast).

    We are looking for Data Engineers who are DV Cleared

Related Jobs

View all jobs

Data Engineer DV Cleared

Data Engineer DV Cleared

Data Engineer

Data Engineer

Data Governance Lead

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Engineering Tools Do You Need to Know to Get a Data Engineering Job?

If you’re aiming for a career in data engineering, it can feel like you’re staring at a never-ending list of tools and technologies — SQL, Python, Spark, Kafka, Airflow, dbt, Snowflake, Redshift, Terraform, Kubernetes, and the list goes on. Scroll job boards and LinkedIn, and it’s easy to conclude that unless you have experience with every modern tool in the data stack, you won’t even get a callback. Here’s the honest truth most data engineering hiring managers will quietly agree with: 👉 They don’t hire you because you know every tool — they hire you because you can solve real data problems with the tools you know. Tools matter. But only in service of outcomes. Jobs are won by candidates who know why a technology is used, when to use it, and how to explain their decisions. So how many data engineering tools do you actually need to know to get a job? For most job seekers, the answer is far fewer than you think — but you do need them in the right combination and order. This article breaks down what employers really expect, which tools are core, which are role-specific, and how to focus your learning so you look capable and employable rather than overwhelmed.

What Hiring Managers Look for First in Data Engineering Job Applications (UK Guide)

If you’re applying for data engineering jobs in the UK, the first thing to understand is this: Hiring managers don’t read every word of your CV. They scan it. They look for signals of relevance, credibility, delivery and collaboration — and if they don’t see the right signals quickly, your application may never get a second look. In data engineering, hiring managers are especially focused on whether you can build and operate reliable, scalable data systems, handle real-world data challenges and work effectively with analytics, BI, data science and engineering teams. This guide breaks down exactly what they look at first in your application — and how to shape your CV, portfolio and cover letter so you stand out.

The Skills Gap in Data Engineering Jobs: What Universities Aren’t Teaching

Data engineering has quietly become one of the most critical roles in the modern technology stack. While data science and AI often receive the spotlight, data engineers are the professionals who design, build and maintain the systems that make data usable at scale. Across the UK, demand for data engineers continues to rise. Organisations in finance, retail, healthcare, government, media and technology all report difficulty hiring candidates with the right skills. Salaries remain strong, and experienced professionals are in short supply. Yet despite this demand, many graduates with degrees in computer science, data science or related disciplines struggle to secure data engineering roles. The reason is not academic ability. It is a persistent skills gap between university education and real-world data engineering work. This article explores that gap in depth: what universities teach well, what they consistently miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data engineering.