Gen AI Specialist

London
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Graduate Data Engineer

Gen AI Specialist
Location: Canary Wharf, London (3 days onsite)
Contract Length: 10 months
Daily Rate: £800 - £850 (inside IR35 via umbrella)

Are you a seasoned Data Scientist with a passion for Generative AI? Our client is seeking a Gen AI Specialist to join their dynamic Technology team in Canary Wharf. This role offers an exciting opportunity to work on innovative solutions that address complex financial data challenges, particularly in credit risk management.

Key Responsibilities:

Lead the development and coordination of analytical plans, ensuring alignment with various teams.
Manage deliverables in an agile environment while maintaining clear and effective communication with stakeholders.
Present analytical findings, updates, and challenges to diverse audiences including business units, technology management, and risk review teams.
Execute data modelling and cleaning processes utilising both internal and external data sources.
Build predictive and prescriptive models through data manipulation and cleaning.
Design, manage, and deploy analytical solutions leveraging Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs) into production systems following the technology SDLC process.
Implement features throughout the ML lifecycle-Development, Testing, Training, Production, and Monitoring-to ensure the scalability and reliability of solutions.Qualifications:

PhD or master's degree in Computer Science, Data Science, Statistics, Mathematics, Engineering, or a related field.
Minimum of 5 years of industry experience as a data scientist, with a focus on ML modelling, Ranking, Recommendations, or Personalization systems.
Proven track record of designing and developing scalable and reliable machine learning systems.
Strong expertise in ML/DL/LLM algorithms, model architectures, and training techniques.
Proficiency in programming languages such as Python, SQL, Spark, PySpark, TensorFlow, or equivalent analytical/model-building tools.
Familiarity with tools and technologies related to LLMs.
Ability to work independently while also thriving in a collaborative team environment.
Experience with GenAI/LLMs projects.
Familiarity with distributed data/computing tools (e.g., Hadoop, Hive, Spark, MySQL).
Background in financial services, including banking or risk management.
Knowledge of capital markets and financial instruments, along with modelling expertise.

If you are a forward-thinking individual with an adaptive mindset ready to tackle complex business problems, we want to hear from you! Join our client's innovative team and contribute to the future of financial data analysis.

To Apply: Please submit your CV and a cover letter detailing your relevant experience and interest in the role.

Our client is an equal opportunity employer and welcomes applicants from diverse backgrounds.

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.

Data Engineering Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the data engineering jobs market in the UK is evolving fast. Almost every organisation is talking about AI, analytics & data-driven decision making – but behind all that sits the data engineering function. Cloud costs, complex data estates, stricter regulation & the explosion of AI workloads are all changing how data platforms are built & run. Some companies are tightening budgets & consolidating teams, while others are doubling down on modern data stacks, lakehouses & real-time pipelines. Whether you are a data engineering job seeker planning your next move, or a recruiter building data teams, understanding the key data engineering hiring trends for 2026 will help you stay ahead.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.