Lead Data Engineer

Holborn and Covent Garden
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead/Senior Data Engineer

Lead Data Engineer - Snowflake, DBT, Airflow - London - £100k

Lead Data Developer

Lead Data Architect

Lead Data Engineer ( Databricks )
London - Hybrid - Remote
Permanent
£100,000 - £130,000 plus up to 20% bonus based on performance and commercial contribution

About the Role

We’re looking for a Lead Data Engineer to spearhead some of our clients most strategic Databricks engagements.

This is a senior client-facing leadership role, blending hands-on technical delivery with architectural design and pre-sales influence.

You'll be leading high-performing squads, guiding complex transformations, and working directly with senior stakeholders to bridge business needs and engineering excellence — particularly in industries like manufacturing, utilities, and aviation.

This is a key hire to support our clients expanding Databricks practice, to build capacity for future growth.

What You’ll Be Doing

  • Act as the technical lead on client engagements, owning design and delivery of data solutions in Databricks.

  • Architect robust, scalable data platforms using the medallion architecture.

  • Translate business requirements into scalable workflows, advising on data governance, quality, and security.

  • Design and implement complex data pipelines using tools like Delta Live Tables (DLT) and Unity Catalog.

  • Guide teams in implementing best practices across engineering, DevOps, and model deployment.

  • Support pre-sales activity, including shaping proposals, estimates, and technical roadmaps.

  • Provide technical leadership, mentorship, and oversight to squads of Senior and Associate Engineers.

  • Collaborate closely with Platform Engineers and Platform Architects to align infrastructure with data needs.

  • Contribute to growing the Databricks capability – from delivery frameworks to internal tooling and capability development.

  • Lead a team of data engineers, fostering a collaborative and growth-oriented environment.

  • Evaluate new data engineering technologies and strategies, assessing their relevance and fit for the organisation’s strategic goals.

  • Work closely with the commercial team to scope projects and develop proposals that align technical capabilities with client requirements.

    Essential Skills & Experience

  • 8+ years in data engineering, with at least 2+ in a technical leadership role

  • Proven experience designing and leading Databricks-based data platforms

  • Deep understanding of the medallion architecture, data lakehouse design, and transformation workflows

  • Hands-on expertise with DLT, Unity Catalog, and model deployment frameworks

  • Strong communication and consulting skills – able to lead client conversations and manage stakeholders

  • Experience in agile delivery environments and cross-functional teams

  • Commercial awareness – comfortable contributing to pre-sales, growing accounts, and engaging with commercial targets

    Desirable Skills

  • Experience in physical asset-heavy industries (e.g. utilities, manufacturing, aviation)

  • Familiarity with platform and DevOps collaboration, especially on AWS or Azure

  • Certifications in Databricks or cloud platforms (AWS/Azure)

  • Background in consulting or client delivery environments

    Why Join?

  • Join a consultancy that’s doubling down on Databricks with enterprise-grade delivery

  • Be the go-to technical leader on projects with real-world business impact

  • Shape the future of our Databricks workforce strategy and delivery model

  • Career progression into Delivery Lead, Practice Lead, or Pre-Sales Specialist

  • Competitive compensation and strong bonus structure, aligned with delivery and commercial impact

    To find out more about this high profile Lead Data Engineering position, click apply

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.