Platform Engineer - HPC / High Performance Computing (we have office locations in Cambridge, Leeds & London)

London
1 week ago
Applications closed

Related Jobs

View all jobs

Platform Engineer

Platform Engineer/SRE

Power Platform Engineer

GCP Lead

Principal Engineer - Site Reliability / SRE (we have office locations in Cambridge, Leeds & London)

Site Reliability Engineer - Graduate Considered

Company Description

Genomics England partners with the NHS to provide whole genome sequencing diagnostics. We also equip researchers to find the causes of disease and develop new treatments – with patients and participants at the heart of it all.

Our mission is to continue refining, scaling, and evolving our ability to enable others to deliver genomic healthcare and conduct genomic research.

We are accelerating our impact and working with patients, doctors, scientists, government and industry to improve genomic testing, and help researchers access the health data and technology they need to make new medical discoveries and create more effective, targeted medicines for everybody.

Job Description

As an experienced AWS HPC Platform Engineer with a proven track record, you’ll confidently lead the implementation of AWS best practices across a team of engineers who are developing their expertise in AWS platform engineering. You’ll support the live service HPC cluster in AWS, ensuring stability and performance, and work closely with our infrastructure architect while focusing on core cloud-related operational activities.

Key Responsibilities: 

Leadership & Mentorship:

Guide and mentor a team of engineers to enhance their AWS platform engineering skills
Promote AWS best practices and drive automation standards within the team

HPC Cluster Support:

Maintain and optimise the live service HPC cluster in AWS

Collaborate with our Infrastructure Architect to ensure architectural alignment and effective implementation

Data Platform & Tools Support:

Manage and support tools that ingest data, including LSF RTM, Athena databases, and workflows

Ensure seamless integration and performance of these tools within AWS

Infrastructure as Code (IaC) Alignment:

Work with the Infrastructure Architect to align on IaC strategies, utilising Ansible Tower and GitLab Pipelines for both AWS and on-prem environments

Benchmarking & Healthchecks:

Develop and integrate standardised benchmarking and healthchecks for the HPC, leveraging AWS capabilities

IOPS Monitoring Tool Integration:

Support the rollout and integration of IOPS monitoring tools (Mistrel/Breeze) in AWS

Ensure these tools are effectively connected to both on-prem and AWS HPC environments

Cost Optimisation:

Implement strategies for cost optimisation of the AWS stack in HPC

Vulnerability Patching:

Develop creative solutions for vulnerability patching of the AWS stack in HPC, particularly for large EC2 instances

S3 Integration:

Support the integration of S3 into Double Helix to provide more cloud storage options

DRAGEN F2 Integration:

Design and support the use of DRAGEN F2 within GEL, including necessary AMIs

Qualifications

Deep, hands-on experience with building compute families (GPUs, CPUs) using cloud services. 

Fluency in data storage services (S3, mount-point, data lakes, Lustre). 

Expertise in Infrastructure as Code (IaC) using Terraform and CI/CD pipelines with GitLab. 

Strong problem-solving skills and ability to see the bigger picture. 

Excellent teamwork and communication skills. 

Additional Information

Salary from: £71,500

Being an integral part of such a meaningful mission is extremely rewarding in itself, but in order to support our people, we’re continually improving our benefits package. We pride ourselves on investing in our people and supporting them to achieve their career goals, as well as offering a benefits package including: 

Generous Leave: 30 days’ holiday plus bank holidays, additional leave for long service, and the option to apply for up to 30 days of remote working abroad annually (approval required).
Family-Friendly: Blended working arrangements, flexible working, enhanced maternity, paternity and shared parental leave benefits.
Pension & Financial: Defined contribution pension (Genomics England double-matches up to 10%, however you can contribute more if you wish), Life Assurance (3x salary), and a Give As You Earn scheme.
Learning & Development: Individual learning budgets, support for training and certifications, and reimbursement for one annual professional subscription (approval required).
Recognition & Rewards: Employee recognition programme and referral scheme.
Health & Wellbeing: Subsidised gym membership, a free Headspace account, and access to an Employee Assistance Programme, eye tests, flu jabs.Equal opportunities and our commitment to a diverse and inclusive workplace 

Genomics England is actively committed to providing and supporting an inclusive environment that promotes equity, diversity and inclusion best practice both within our community and in any other area where we have influence. We are proud of our diverse community where everyone can come to work and feel welcomed and treated with respect regardless of any disability, ethnicity, gender, gender identity, religion, sexual orientation, or social background. 

Genomics England’s policies of non-discrimination and equity and will be applied fairly to all people, regardless of age, disability, gender identity or reassignment, marital or civil partnership status, being pregnant or recently becoming a parent, race, religion or beliefs, sex or sexual orientation, length of service, whether full or part-time or employed under a permanent or a fixed-term contract or any other relevant factor.  

Genomics England does not tolerate any form of discrimination, harassment, victimisation or bullying at work. Such behaviour is contrary to

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.