Python/Data Science Developer

City of London
3 weeks ago
Create job alert

Python - Data Science Developer

Contract Type: Contract To Perm (inside IR35 via umbrella)
Location: Canary Wharf, London (4 minutes walk from Canary Wharf train station)
Work Arrangement: Hybrid Working - 3 days onsite

Are you a passionate Python Developer with a strong background in Data Science? Do you thrive in an agile environment and want to play a pivotal role in transforming financial data into actionable insights? Our client, a leading organisation in the financial sector, is seeking an experienced Python - Data Science Developer to join their dynamic Technology team.

Key Responsibilities:

As a Data Scientist Lead, you will:

Develop and coordinate plans for analytical initiatives, ensuring alignment with business objectives.
Manage deliverables in an agile setting, maintaining clear communication with all stakeholders.
Present analytical findings, status updates, and potential issues to various audience groups, including business, technology management, and model governance.
Conduct data modelling and cleaning from both internal and external sources to ensure data integrity.
Build predictive and prescriptive models, utilising advanced techniques to manipulate and clean data results.
Develop, manage, and deploy analytical solutions using Machine Learning (ML), Deep Learning (DL), and Large Language Models (LLMs), ensuring production systems adhere to technology SDLC processes.
Implement features through the full ML lifecycle, including Development, Testing, Training, and Monitoring/Evaluation to guarantee scalability and reliability.Qualifications:

PhD or Master's degree in Computer Science, Data Science, Statistics, Mathematics, Engineering, or a related field.
A minimum of 5 years of industry experience as a Data Scientist, specialising in ML Modelling, Ranking, Recommendations, or Personalization systems.
Proven experience in designing and developing scalable machine learning systems for training, inference, monitoring, and iteration.
Strong understanding of ML/DL/LLM algorithms, model architectures, and training methodologies.
Proficient in Python, SQL, Spark, PySpark, TensorFlow, or other analytical/model-building programming languages.
Familiarity with tools and Large Language Models (LLMs).
Ability to work both independently and collaboratively within a team.Preferred Skills:

Experience in Generative AI (GenAI) and LLM projects.
Familiarity with distributed data/computing tools (e.g., Hadoop, Hive, Spark, MySQL).
Background in the financial industry, particularly in banking and risk management.
Knowledge of capital markets, financial instruments, and modelling techniques.Education:

Bachelor's degree or equivalent experience in a STEM field.

Join us in shaping the future of data science in finance!

Adecco is a disability-confident employer. It is important to us that we run an inclusive and accessible recruitment process to support candidates of all backgrounds and all abilities to apply. Adecco is committed to building a supportive environment for you to explore the next steps in your career. If you require reasonable adjustments at any stage, please let us know and we will be happy to support you

Related Jobs

View all jobs

Data Science Consultant

Graduate BI Developer

Software Engineers

Infrastructue Engineer

Applications Engineer

Data Science Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Apprenticeships: Your In-Depth Guide to a High-Growth Tech Career

Data sits at the heart of modern business. From predictive analytics in finance to personalised recommendations in e-commerce, virtually every sector relies on data to make informed decisions, optimise operations, and drive innovation. Yet, as data volumes grow exponentially, so does the complexity of managing and utilising it effectively. In this evolving environment, data engineering has emerged as a critical discipline—responsible for designing, building, and maintaining the pipelines that transform raw information into actionable insights. If you’re looking to break into this vibrant and future-oriented field, data engineering apprenticeships offer a hands-on, cost-effective route. Designed to fast-track your skills, apprenticeships combine formal training with practical, on-the-job learning. Whether you’re a school leaver or a professional seeking a career change, this guide will walk you through everything you need to know about data engineering apprenticeships in the UK—from the roles you might undertake, to the skills you’ll master, and the exciting career paths that await.

Tips for Staying Inspired: How Data Engineering Pros Fuel Creativity and Innovation

Data engineering stands at the core of modern business intelligence, analytics, and machine learning initiatives. As more organisations become data-driven, the demands on data engineers—everything from building robust pipelines and optimising data warehouses to cleaning and transforming petabytes of raw information—only intensify. Yet, remaining innovative and creative in this rapidly evolving space can be challenging when faced with routine maintenance, endless transformations, and the pressure of meeting tight deadlines. So, how do data engineers stay inspired and consistently generate new ideas? Below are ten actionable strategies to help data pipeline experts, ETL developers, and cloud data architects maintain an inventive outlook, even when operations are complex and the stakes are high. If you’re looking to expand your skills, tackle challenges from fresh angles, and reinvigorate your passion for data engineering, these tips can guide you toward a more fulfilling and impactful career.

Top 10 Data Engineering Career Myths Debunked: Key Facts for Aspiring Professionals

Data is the lifeblood of modern businesses. Whether it’s guiding strategic decisions, powering advanced analytics, or fuelling machine learning models, the role of data has evolved from a back-office function to a primary driver of innovation. In this ecosystem, data engineers serve as architects and builders, designing the infrastructure and pipelines that allow organisations to collect, transform, and mobilise data efficiently. Despite the importance and rapid growth of this field, plenty of myths and misconceptions continue to cloud the realm of data engineering. Are data engineers merely “ETL developers”? Does the role only exist in big tech companies? Must you be a Python guru with a master’s degree in computer science? At DataEngineeringJobs.co.uk, we see firsthand how these myths can deter aspiring professionals from stepping into one of the most dynamic fields in data. This article aims to dispel the top 10 misconceptions about data engineering careers—shedding light on the real opportunities, necessary skills, and diverse pathways that define this vital profession. Whether you’re a student considering data engineering as your future vocation or a seasoned professional seeking a career pivot, read on. You might discover that data engineering is more inclusive and wide-ranging than you ever imagined.