Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Credit Risk Analyst - Consumer Lending / Loans

Birmingham
6 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Senior Snowflake Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio

Client Details

Rapidly expanding financial services company

Description

This rapidly expanding financial services company are seeking a Senior Credit Risk Analyst to join their Consumer Lending function. Working with the Commercial Director you will develop credit risk analytics / scorecard modelling solutions to enhance Credit Scoring & Lending decisioning to optimise and grow their loan portfolio.

Key Responsibilities:

Developing and implementing advanced statistical / scorecard models to predict credit risk, optimise credit scoring, and enhance decision-making/underwriting processes.
Develop and maintain predictive models to assess credit risk and forecast customer behaviour.
Analyse large datasets to identify trends, patterns, and insights that inform business decisions.
Perform data cleaning to ensure high-quality data for analysis,
Conduct A/B testing and other experiments to evaluate the impact of credit strategies and policies.
Develop credit risk models, such as probability of default (PD) using various modelling techniques.
Working independently and presenting findings and recommendations to stakeholders in a clear and concise manner.Key Skills / Experience:

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Profile

Experience in the Financial Services Industry (Essential)
Experience working with large data sets (Essential)
Proficiency in Python, R, SQL or other programming languages (Essential)
Proficiency in Excel (Essential)
Strong presentation skills, including the ability to translate complex data into understandable insight (Essential)
A great attention to detail and be process-oriented to review, suggest and implement improvements where appropriate. (Essential)
Able to work in a fast paced, changing environment.(Essential)
Degree in relevant subject (Data Science, Statistics, Computer Science, Economics or similar degree) (Preferable)
Experience using Salesforce and data visualisation tools (Preferable)Job Offer

Opportunity to develop and enhance credit risk modelling & analytics strategy

Opportunity to join a rapidly expanding financial services company

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.

Why Data Engineering Careers in the UK Are Becoming More Multidisciplinary

For many years, data engineering in the UK meant designing pipelines, moving data between systems, and ensuring analysts had what they needed. Today, the field is expanding. With cloud platforms, machine learning, real-time analytics and the explosion of sensitive personal data, employers expect data engineers to do much more. Modern data engineering is no longer just about code and storage. It requires legal awareness, ethical judgement, psychological insight, linguistic clarity and human-centred design. These disciplines shape how data is collected, processed, explained and trusted. In this article, we’ll explore why data engineering careers in the UK are becoming more multidisciplinary, how law, ethics, psychology, linguistics & design now influence job descriptions, and what job-seekers & employers must do to thrive.

Data Engineering Team Structures Explained: Who Does What in a Modern Data Engineering Department

Data has become the lifeblood of modern organisations. Every sector in the UK—finance, healthcare, retail, government, technology—is increasingly relying on insights derived from data to drive decisions, deliver products, and improve operations. But raw data on its own isn’t enough. To make data useful, reliable, secure, and scalable, companies must build strong data engineering teams. If you’re recruiting for data engineering or seeking a role, understanding the structure of such a team and who does what is essential. This article breaks down the typical roles in a modern data engineering department, how they collaborate, required skills and qualifications, expected UK salaries, common challenges, and advice on structuring and growing a data engineering team.