Senior Data Engineer

Farringdon
1 week ago
Create job alert

Role: Senior Data Engineer
Contract: 6 months
Location: London - EC1M (Hybrid – minimum 2 days per week onsite)
Rate: £425/day (Inside IR35)
Start: ASAP
Positions: 4

The Opportunity

We are looking for experienced Senior Data Engineers to join a large-scale retail data transformation programme. You’ll work on modern cloud data platforms, building robust, scalable data pipelines that power analytics, reporting, and downstream data products.

This is a hands-on role with strong exposure to Snowflake, DBT, cloud platforms (AWS/Azure) and modern engineering best practices. You’ll collaborate closely with architects, analysts, and business stakeholders, and play a key role in setting technical standards within the team.

Key Responsibilities

  • Design, develop, and maintain scalable ETL/ELT pipelines

  • Build and optimise data transformations using DBT and SQL

  • Implement and maintain data models (Data Vault experience highly desirable)

  • Monitor, troubleshoot, and optimise production data pipelines

  • Work with Snowflake to deliver high-performance analytics solutions

  • Collaborate with cross-functional teams to translate business requirements into technical solutions

  • Support data governance, data quality, and best engineering practices

  • Mentor junior engineers and contribute to technical decision-making

    Essential Skills & Experience

  • Strong hands-on experience as a Senior Data Engineer

  • Snowflake data warehouse experience

  • DBT for data transformation and modelling

  • Advanced SQL and Python

  • Experience building pipelines using Airflow (or similar orchestration tools)

  • Cloud experience on AWS and/or Azure

  • Infrastructure-as-code exposure (e.g. Terraform)

  • Git-based version control (GitHub, Azure DevOps)

  • Strong communication and stakeholder engagement skills

    Desirable Experience

  • Data Vault (DV 2.0) modelling

  • Data governance tools (e.g. Alation)

  • Azure Data Lake, Delta Lake, Redis

  • CI/CD using GitHub Actions or Azure DevOps

  • Monitoring and observability for data platforms

    Why Apply?

  • Hybrid working with limited onsite requirement

  • Long-term, well-funded programme

  • Modern data stack and real-world scale

  • Multiple positions available – strong team environment

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Engineering Tools Do You Need to Know to Get a Data Engineering Job?

If you’re aiming for a career in data engineering, it can feel like you’re staring at a never-ending list of tools and technologies — SQL, Python, Spark, Kafka, Airflow, dbt, Snowflake, Redshift, Terraform, Kubernetes, and the list goes on. Scroll job boards and LinkedIn, and it’s easy to conclude that unless you have experience with every modern tool in the data stack, you won’t even get a callback. Here’s the honest truth most data engineering hiring managers will quietly agree with: 👉 They don’t hire you because you know every tool — they hire you because you can solve real data problems with the tools you know. Tools matter. But only in service of outcomes. Jobs are won by candidates who know why a technology is used, when to use it, and how to explain their decisions. So how many data engineering tools do you actually need to know to get a job? For most job seekers, the answer is far fewer than you think — but you do need them in the right combination and order. This article breaks down what employers really expect, which tools are core, which are role-specific, and how to focus your learning so you look capable and employable rather than overwhelmed.

What Hiring Managers Look for First in Data Engineering Job Applications (UK Guide)

If you’re applying for data engineering jobs in the UK, the first thing to understand is this: Hiring managers don’t read every word of your CV. They scan it. They look for signals of relevance, credibility, delivery and collaboration — and if they don’t see the right signals quickly, your application may never get a second look. In data engineering, hiring managers are especially focused on whether you can build and operate reliable, scalable data systems, handle real-world data challenges and work effectively with analytics, BI, data science and engineering teams. This guide breaks down exactly what they look at first in your application — and how to shape your CV, portfolio and cover letter so you stand out.

The Skills Gap in Data Engineering Jobs: What Universities Aren’t Teaching

Data engineering has quietly become one of the most critical roles in the modern technology stack. While data science and AI often receive the spotlight, data engineers are the professionals who design, build and maintain the systems that make data usable at scale. Across the UK, demand for data engineers continues to rise. Organisations in finance, retail, healthcare, government, media and technology all report difficulty hiring candidates with the right skills. Salaries remain strong, and experienced professionals are in short supply. Yet despite this demand, many graduates with degrees in computer science, data science or related disciplines struggle to secure data engineering roles. The reason is not academic ability. It is a persistent skills gap between university education and real-world data engineering work. This article explores that gap in depth: what universities teach well, what they consistently miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data engineering.