Senior Data Engineer - MS Fabric - Remote - £70k - £75k

Manchester
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer - MS Fabric - Remote - £70k - £75k

My client are a leading Data Partner and consultancy looking for an experienced senior data engineer with skills in Microsoft Fabric being the absolute essential here, the Azure Data Platform and Python to join their expanding team in a role which encompasses technical know how and a client-facing skillset.

Salary and Benefits

Competitive salary of up to £75k (DOE)
Annual Performance related bonus of 10%
Remote/hybrid working (once every 2 weeks in office) in Edinburgh, Manchester or London hubs
25 days annual leave (plus bank and public holidays)
Career progress programme - guaranteed learning and development investment
Life insurance
Private medical health insurance
Contributory pension schemeRole and Responsibilities

Possess a wide range of data engineering skills, with a focus on having delivered in Microsoft Azure
Develop good working relationships with clients on a project including interpersonal skills with both business and technical focused colleagues.
Experience working as a data engineer to develop performant end-to-end solutions in a collaborative team environment.
Delivering high-quality pieces of work, proven ability to escalate problems to client / senior team members where necessary and propose possible solutions.
Support building the Consulting practice through contribution to ongoing initiatives. This can include contributing to knowledge-sharing activities, and data services.
Demonstrated success in delivering commercial projects leveraging the above technologies.
Experience overseeing junior staff, including mentoring, reviewing work, and ensuring project alignment with organisational goals and standards.What do I need to apply for the role

Strong in Fabric, Azure Data Factory, Azure Synapse.
Expertise in SQL and Python.
Experience working with relational SQL databases either on premises or in the cloud.
Experience delivering multiple solutions using key techniques such as Governance, Architecture, Data Modelling, ETL / ELT, Data Lakes, Data Warehousing, Master Data, and BI.
A solid understanding of key processes in the engineering delivery cycle including Agile and DevOps, Git, APIs, Containers, Microservices and Data Pipelines.
Experience working with one or more of Spark, Kafka, or Snowflake

My client have very limited interview slots and they are looking to fill this vacancy within the next 2 weeks. I have limited slots for 1st stage interviews next week so if you're interest, get in touch ASAP with a copy of your most up to date CV and email me at or call me on (phone number removed).

Please Note: This is a permanent role for UK residents only. This role does not offer Sponsorship. You must have the right to work in the UK with no restrictions. Some of our roles may be subject to successful background checks including a DBS and Credit Check.

Nigel Frank are the go-to recruiter for Power BI and Azure Data Platform roles in the UK, offering more opportunities across the country than any other. We're the proud sponsor and supporter of SQLBits, Power Platform World Tour, the London Power BI User Group, Newcastle Power BI User Group and Newcastle Data Platform and Cloud User Group. To find out more and speak confidentially about your job search or hiring needs, please contact me directly at

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.