Senior Data Engineer x1/ Data Engineer x1 (Financial Services)

London
2 days ago
Create job alert

Your new company

Working for a renowned commodity, metals, trades and exchange group.
You'll be a key part of the Enterprise Data team helping to replace legacy ETL tools (Informatica) and deliver modern data engineering capabilities. Your work will include managing data pipelines, supporting analysis and visualisation, and collaborating with ETL developers and wider technology teams to deliver solutions aligned with our strategic roadmap.

You'll work across backend, data, and infrastructure engineering, contributing to solution design, implementation, deployment, testing, and support. This is a hands-on role for someone with strong data engineering skills and experience in regulated environments.

Your new role

Design, build, and maintain scalable data pipelines and infrastructure for analytics and integration across data platforms.
Ensure data quality and reliability through automated validation, monitoring, and testing using Python, Java, or Scala.
Develop and manage database architectures, including data lakes and warehouses.
Clean, transform, and validate data to maintain consistency and accuracy.
Collaborate with technical and non-technical teams, providing clear communication on project progress and requirements.
Create and maintain accurate technical documentation.
Support internal data analysis and reporting for business objectives.
Investigate and resolve data-related issues, implementing improvements for stability and performance.
Evaluate and prototype solutions to ensure optimal architecture, cost, and scalability.
Implement best practices in automation, CI/CD, and test-driven development.What you'll need to succeed

Strong experience in Data Engineering, with demonstrable lead 5involvement in at least one production-grade data system within financial services or a similarly regulated industry.
Strong coding skills in Python or Java (Spring Boot); React experience is a plus.
Proficiency with modern data tools: Airflow, Spark, Kafka, dbt, Snowflake or similar.
Experience with cloud platforms (AWS, Azure, GCP), containerization (Docker, Kubernetes), and CI/CD.
Data Quality: Proven ability to validate and govern data pipelines, ensuring data integrity, correctness, and compliance.
Experience working within financial services/ highly regulated environments.
Bonus Skills:

SQL and RDBMS (PostgreSQL, SQL Server).
NoSQL/distributed databases (MongoDB).
Streaming pipelines experience.

What you'll get in return
An exciting opportunity to join an international organisation in financial services. Furthermore, a competitive day rate inside IR35 for this role will be offered in addition to your own dedicated Hays Consultant to guide you through every step of the application process.

What you need to do now
If you're interested in this role, click 'apply now' to forward an up-to-date copy of your CV, or call us now.

Hays Specialist Recruitment Limited acts as an employment agency for permanent recruitment and employment business for the supply of temporary workers. By applying for this job you accept the T&C's, Privacy Policy and Disclaimers which can be found at (url removed)

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.

Data Engineering Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the data engineering jobs market in the UK is evolving fast. Almost every organisation is talking about AI, analytics & data-driven decision making – but behind all that sits the data engineering function. Cloud costs, complex data estates, stricter regulation & the explosion of AI workloads are all changing how data platforms are built & run. Some companies are tightening budgets & consolidating teams, while others are doubling down on modern data stacks, lakehouses & real-time pipelines. Whether you are a data engineering job seeker planning your next move, or a recruiter building data teams, understanding the key data engineering hiring trends for 2026 will help you stay ahead.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.