Software Engineer

City of London
9 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer - Data Engineering

Data Engineer

Data Engineer - SC Cleared

SAS Data Engineer

Lead Data Engineer

Senior Data Engineer - Azure & Snowflake

Software Engineer (Permanent) - Location: Central London

Salary: Up to £90K + excellent benefits

We're looking for a talented Software Engineer with 2-4 years Python experience to join a fast-growing business at the forefront of Science and Technology. This company is doing incredible work in the life sciences sector, with teams focused on creating accessible AI algorithms specifically designed for drug discovery and related challenges.

In this role, you'll design, develop, and maintain software systems that address real-world problems in AI and drug discovery. You'll have the chance to make a real impact, helping shape the company's technological foundations from the ground up.

Working in an interdisciplinary environment-spanning physics, chemistry, biology, and machine learning-you'll continuously grow your skills while contributing to meaningful innovation.

What We're Looking For:

2-4 years of hands-on software development experience
Backend experience
A passion for software engineering and continuous improvement
Proficiency in one or more programming languages (especially Python; other useful languages include Java, C++, or Go)
Strong knowledge of data structures, algorithms, and system design
Experience with distributed systems, APIs, and/or cloud platforms (e.g., AWS, GCP)
Comfortable working with both SQL and NoSQL databases
Experience in an Agile development environment
Degree (BSc, MSc, or PhD) in Computer Science, Engineering, or a related field
Bonus points for knowledge in machine learning, AI, data engineering, or DevOps/containerizationGCS is acting as an Employment Agency in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Engineering Tools Do You Need to Know to Get a Data Engineering Job?

If you’re aiming for a career in data engineering, it can feel like you’re staring at a never-ending list of tools and technologies — SQL, Python, Spark, Kafka, Airflow, dbt, Snowflake, Redshift, Terraform, Kubernetes, and the list goes on. Scroll job boards and LinkedIn, and it’s easy to conclude that unless you have experience with every modern tool in the data stack, you won’t even get a callback. Here’s the honest truth most data engineering hiring managers will quietly agree with: 👉 They don’t hire you because you know every tool — they hire you because you can solve real data problems with the tools you know. Tools matter. But only in service of outcomes. Jobs are won by candidates who know why a technology is used, when to use it, and how to explain their decisions. So how many data engineering tools do you actually need to know to get a job? For most job seekers, the answer is far fewer than you think — but you do need them in the right combination and order. This article breaks down what employers really expect, which tools are core, which are role-specific, and how to focus your learning so you look capable and employable rather than overwhelmed.

What Hiring Managers Look for First in Data Engineering Job Applications (UK Guide)

If you’re applying for data engineering jobs in the UK, the first thing to understand is this: Hiring managers don’t read every word of your CV. They scan it. They look for signals of relevance, credibility, delivery and collaboration — and if they don’t see the right signals quickly, your application may never get a second look. In data engineering, hiring managers are especially focused on whether you can build and operate reliable, scalable data systems, handle real-world data challenges and work effectively with analytics, BI, data science and engineering teams. This guide breaks down exactly what they look at first in your application — and how to shape your CV, portfolio and cover letter so you stand out.

The Skills Gap in Data Engineering Jobs: What Universities Aren’t Teaching

Data engineering has quietly become one of the most critical roles in the modern technology stack. While data science and AI often receive the spotlight, data engineers are the professionals who design, build and maintain the systems that make data usable at scale. Across the UK, demand for data engineers continues to rise. Organisations in finance, retail, healthcare, government, media and technology all report difficulty hiring candidates with the right skills. Salaries remain strong, and experienced professionals are in short supply. Yet despite this demand, many graduates with degrees in computer science, data science or related disciplines struggle to secure data engineering roles. The reason is not academic ability. It is a persistent skills gap between university education and real-world data engineering work. This article explores that gap in depth: what universities teach well, what they consistently miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data engineering.