Infrastructure Engineer

Cambridge
2 weeks ago
Create job alert

Cloud Analytics Engineer - £50,000 - Hybrid

I'm looking for a Cloud Analytics Engineer who is ready to a well-established organisation based in Ipswich. You will work closely with their data systems team leader, developing and implementing scalable data pipelines on cloud platforms Azure and Fabric.

They operate with a flexible hybrid working model where colleagues can enjoy both home working and being in the office.

The role requires a mix of data engineering, analytics and cloud computing and requires expertise to create solutions for cloud and hybrid data systems problems.

Requirements:

-Experience in Azure, Fabric and Power Automate

-Ability to build and maintain ELT/ELT processes

-Optimise cloud-based services: Snowflake, Azure and Fabric

-Experience mentoring junior team

-Past success with business stakeholders

Benefits:

25 days holiday plus Bank Holidays
Private Healthcare
Staff Profit Share and Individual Performance Bonus Scheme
Pension Scheme
Electric car scheme
Agile/Hybrid Working Policy

Please Note: This is a permanent role for UK residents only. This role does not offer Sponsorship. You must have the right to work in the UK with no restrictions. Some of our roles may be subject to successful background checks including a DBS and Credit Check.

Contact me: or (phone number removed)

Related Jobs

View all jobs

Infrastructure Engineer

Infrastructure Engineer

3rd Line Infrastructure Engineer DV CLEARED

Infrastructue Engineer

Senior Data Engineer

Infrastructure Architect - Azure, AWS, GCP, Databricks

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Engineering Apprenticeships: Your In-Depth Guide to a High-Growth Tech Career

Data sits at the heart of modern business. From predictive analytics in finance to personalised recommendations in e-commerce, virtually every sector relies on data to make informed decisions, optimise operations, and drive innovation. Yet, as data volumes grow exponentially, so does the complexity of managing and utilising it effectively. In this evolving environment, data engineering has emerged as a critical discipline—responsible for designing, building, and maintaining the pipelines that transform raw information into actionable insights. If you’re looking to break into this vibrant and future-oriented field, data engineering apprenticeships offer a hands-on, cost-effective route. Designed to fast-track your skills, apprenticeships combine formal training with practical, on-the-job learning. Whether you’re a school leaver or a professional seeking a career change, this guide will walk you through everything you need to know about data engineering apprenticeships in the UK—from the roles you might undertake, to the skills you’ll master, and the exciting career paths that await.

Tips for Staying Inspired: How Data Engineering Pros Fuel Creativity and Innovation

Data engineering stands at the core of modern business intelligence, analytics, and machine learning initiatives. As more organisations become data-driven, the demands on data engineers—everything from building robust pipelines and optimising data warehouses to cleaning and transforming petabytes of raw information—only intensify. Yet, remaining innovative and creative in this rapidly evolving space can be challenging when faced with routine maintenance, endless transformations, and the pressure of meeting tight deadlines. So, how do data engineers stay inspired and consistently generate new ideas? Below are ten actionable strategies to help data pipeline experts, ETL developers, and cloud data architects maintain an inventive outlook, even when operations are complex and the stakes are high. If you’re looking to expand your skills, tackle challenges from fresh angles, and reinvigorate your passion for data engineering, these tips can guide you toward a more fulfilling and impactful career.

Top 10 Data Engineering Career Myths Debunked: Key Facts for Aspiring Professionals

Data is the lifeblood of modern businesses. Whether it’s guiding strategic decisions, powering advanced analytics, or fuelling machine learning models, the role of data has evolved from a back-office function to a primary driver of innovation. In this ecosystem, data engineers serve as architects and builders, designing the infrastructure and pipelines that allow organisations to collect, transform, and mobilise data efficiently. Despite the importance and rapid growth of this field, plenty of myths and misconceptions continue to cloud the realm of data engineering. Are data engineers merely “ETL developers”? Does the role only exist in big tech companies? Must you be a Python guru with a master’s degree in computer science? At DataEngineeringJobs.co.uk, we see firsthand how these myths can deter aspiring professionals from stepping into one of the most dynamic fields in data. This article aims to dispel the top 10 misconceptions about data engineering careers—shedding light on the real opportunities, necessary skills, and diverse pathways that define this vital profession. Whether you’re a student considering data engineering as your future vocation or a seasoned professional seeking a career pivot, read on. You might discover that data engineering is more inclusive and wide-ranging than you ever imagined.