Director of Engineering - Advanced Analytics

London
1 month ago
Applications closed

Related Jobs

View all jobs

Director of Artificial Intelligence - Manufacturing & Industrial

Director of Data Science & AI – Global Manufacturing Transformation

Graduate Data Engineer

Head of People and Culture

Head of Commercial Analysis and Reporting

Operations Director

Job Title: Director of Engineering - Advanced Analytics
Location: Hybrid - London office in Southwark Bridge 2 days per week
Duration: 3 Months
Clearance: BPSS - Sole UK National
Rate: £900 per day - via Umbrella Only

Job description:

As the Director of Engineering for our Advanced Analytics business unit, you will lead the development of innovative tools and systems that power data-driven insights and analytics across the organisation. Your leadership will play a pivotal role in driving the next generation of advanced analytics capabilities, ensuring world-class performance, scalability, and efficiency.
This high-visibility role offers a broad scope of responsibility, where you'll influence the direction of our analytics solutions and shape the way we leverage data to optimise business outcomes.
You will work closely with passionate and dedicated colleagues and clients, all committed to driving transformation in the digital media space. Our open, innovative workspace fosters creativity and encourages new ideas, making it easy for everyone to contribute to our shared success.

What You'll Do:

Lead the development and enhancement of advanced analytics tools, focusing on data processing, integration, and optimization in a fast-paced, agile environment.
Manage, mentor, and grow a team of skilled engineers, providing guidance through regular performance reviews and career development opportunities.
Ensure seamless collaboration with cross-functional teams (product, engineering, business) to translate business objectives into actionable technical solutions.
Remove blockers and resolve technical challenges for engineering teams, ensuring smooth execution of analytics initiatives.
Actively participate in code reviews, design discussions, and ensure the implementation of best practices for scalable, future-proof solutions.
Champion agile methodologies, driving teams to deliver high-quality products on time and within budget.
Oversee the full SDLC (planning, design, development, QA, CI/CD, and production support) to ensure timely and efficient delivery of analytics solutions.
Provide second-level support for production systems, ensuring the stability, reliability, and performance of analytics platforms.
Collaborate with architects and other engineering leaders to establish standards, process documentation, and conduct impact assessments.
Manage and resolve escalations effectively, ensuring smooth operations and minimal disruption to project timelines.
What You'll Need:

3+ years of experience in a leadership role with 5+ years of hands-on software engineering experience.
Strong expertise in software architecture, data pipeline design, and scalable analytics systems.
Proven experience with integrating and automating business workflows, including data-driven processes and system integrations.
Familiarity with analytics platforms and tools such as GCP (BigQuery), AWS (Glue, Athena), or Azure Databricks.
Proficiency in Python or .NET, with experience in both or the ability to quickly learn new technologies.
Experience with front-end frameworks (Angular/React) and back-end development (API management, microservices).
Strong knowledge of SQL, data modelling, and database optimization techniques.
Hands-on experience with Docker, cloud platforms (GCP, AWS, Azure), and CI/CD pipelines.
Familiarity with event-driven architectures and building real-time data analytics solutions.
Experience working with large-scale, high-concurrency systems and ensuring high availability.
Previous experience managing globally distributed teams, fostering collaboration across time zones.
Experience in building machine learning solutions and data-driven software is a plus.
You Have a Passion For:

Solving complex data challenges and turning raw data into actionable business insights.
Collaborating with business stakeholders to identify analytics opportunities and optimise business processes.
Innovating and developing solutions that drive data efficiency and performance.
Leading teams with empathy, recognising gaps in knowledge and proactively pursuing development opportunities.
Agile development practices, continuous integration, automation, and delivering high-quality analytics solutions.
Communicating effectively with business users, product managers, and senior leadership to ensure alignment on objectives and technical strategies.
Working in fast-paced, entrepreneurial environments, particularly in data-driven or analytics-heavy industries

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.