Director of Engineering - Advanced Analytics

London
8 months ago
Applications closed

Job Title: Director of Engineering - Advanced Analytics
Location: Hybrid - London office in Southwark Bridge 2 days per week
Duration: 3 Months
Clearance: BPSS - Sole UK National
Rate: £900 per day - via Umbrella Only

Job description:

As the Director of Engineering for our Advanced Analytics business unit, you will lead the development of innovative tools and systems that power data-driven insights and analytics across the organisation. Your leadership will play a pivotal role in driving the next generation of advanced analytics capabilities, ensuring world-class performance, scalability, and efficiency.
This high-visibility role offers a broad scope of responsibility, where you'll influence the direction of our analytics solutions and shape the way we leverage data to optimise business outcomes.
You will work closely with passionate and dedicated colleagues and clients, all committed to driving transformation in the digital media space. Our open, innovative workspace fosters creativity and encourages new ideas, making it easy for everyone to contribute to our shared success.

What You'll Do:

Lead the development and enhancement of advanced analytics tools, focusing on data processing, integration, and optimization in a fast-paced, agile environment.
Manage, mentor, and grow a team of skilled engineers, providing guidance through regular performance reviews and career development opportunities.
Ensure seamless collaboration with cross-functional teams (product, engineering, business) to translate business objectives into actionable technical solutions.
Remove blockers and resolve technical challenges for engineering teams, ensuring smooth execution of analytics initiatives.
Actively participate in code reviews, design discussions, and ensure the implementation of best practices for scalable, future-proof solutions.
Champion agile methodologies, driving teams to deliver high-quality products on time and within budget.
Oversee the full SDLC (planning, design, development, QA, CI/CD, and production support) to ensure timely and efficient delivery of analytics solutions.
Provide second-level support for production systems, ensuring the stability, reliability, and performance of analytics platforms.
Collaborate with architects and other engineering leaders to establish standards, process documentation, and conduct impact assessments.
Manage and resolve escalations effectively, ensuring smooth operations and minimal disruption to project timelines.
What You'll Need:

3+ years of experience in a leadership role with 5+ years of hands-on software engineering experience.
Strong expertise in software architecture, data pipeline design, and scalable analytics systems.
Proven experience with integrating and automating business workflows, including data-driven processes and system integrations.
Familiarity with analytics platforms and tools such as GCP (BigQuery), AWS (Glue, Athena), or Azure Databricks.
Proficiency in Python or .NET, with experience in both or the ability to quickly learn new technologies.
Experience with front-end frameworks (Angular/React) and back-end development (API management, microservices).
Strong knowledge of SQL, data modelling, and database optimization techniques.
Hands-on experience with Docker, cloud platforms (GCP, AWS, Azure), and CI/CD pipelines.
Familiarity with event-driven architectures and building real-time data analytics solutions.
Experience working with large-scale, high-concurrency systems and ensuring high availability.
Previous experience managing globally distributed teams, fostering collaboration across time zones.
Experience in building machine learning solutions and data-driven software is a plus.
You Have a Passion For:

Solving complex data challenges and turning raw data into actionable business insights.
Collaborating with business stakeholders to identify analytics opportunities and optimise business processes.
Innovating and developing solutions that drive data efficiency and performance.
Leading teams with empathy, recognising gaps in knowledge and proactively pursuing development opportunities.
Agile development practices, continuous integration, automation, and delivering high-quality analytics solutions.
Communicating effectively with business users, product managers, and senior leadership to ensure alignment on objectives and technical strategies.
Working in fast-paced, entrepreneurial environments, particularly in data-driven or analytics-heavy industries

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Engineering Careers: Turning Different Thinking into a Superpower

Every modern organisation runs on data – but without good data engineering, even the best dashboards & machine learning models are built on sand. Data engineers design the pipelines, platforms & tools that make data accurate, accessible & reliable. Those pipelines need people who can think in systems, spot patterns in messy logs, notice what others overlook & design elegant solutions to complex problems. That is exactly why data engineering can be such a strong fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a data engineering career, you might have heard comments like “you’re too disorganised for engineering”, “too literal for stakeholder work” or “too distracted for complex systems”. In reality, the traits that can make traditional office environments hard often line up beautifully with data engineering work. This guide is written for data engineering job seekers in the UK. We’ll cover: What neurodiversity means in a data engineering context How ADHD, autism & dyslexia strengths map to common data engineering tasks Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data engineering – & how to turn “different thinking” into a genuine professional superpower.

Data Engineering Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the data engineering jobs market in the UK is evolving fast. Almost every organisation is talking about AI, analytics & data-driven decision making – but behind all that sits the data engineering function. Cloud costs, complex data estates, stricter regulation & the explosion of AI workloads are all changing how data platforms are built & run. Some companies are tightening budgets & consolidating teams, while others are doubling down on modern data stacks, lakehouses & real-time pipelines. Whether you are a data engineering job seeker planning your next move, or a recruiter building data teams, understanding the key data engineering hiring trends for 2026 will help you stay ahead.

Data Engineering Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data engineering hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise reliable pipelines, modern lakehouse/streaming stacks, data contracts & governance, observability, performance/cost discipline & measurable business outcomes. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for platform‑oriented DEs, analytics engineers, streaming specialists, data reliability engineers, DEs supporting AI/ML platforms & data product managers. Who this is for: Data engineers, analytics engineers, streaming engineers, data reliability/SRE, data platform engineers, data product owners, ML/feature‑store engineers & SQL/ELT specialists targeting roles in the UK.