Science Analytics and Reporting Specialist

Reading
1 month ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Principal Data Scientist

Principal Data Scientist

Head of Commercial Analysis and Reporting

Data Analytics & Data Science Lead

Compliance Engineer

Science Analytics and Reporting Specialist

Location: RG7 4PR, located between Reading and Basingstoke, with free onsite parking.

Package: £47,860 - £70,200 (depending on your suitability, qualifications, and level of experience)

Working pattern: AWE operates a 9-day working fortnight. We will consider flexible working requests so that your work may fit in with your lifestyle. Just let us know your preferred working pattern on your application.

Let us introduce the role

The Science Business Operations team at AWE is committed to driving excellence and innovation in our business processes. We are seeking a motivated individual with a growth mindset to join us as a Science Analytics & Reporting Specialist. This role offers the opportunity to make a significant impact on our reporting and analytics capabilities, supporting key stakeholders in making informed business decisions.

As a Science Analytics & Reporting Specialist, you will collaborate closely with all Science areas to develop delivery performance indicators and ensure effective reporting across all levels of the business. You will coordinate the development and management of reporting and metrics across various aspects of our business operations, including resourcing, finances, and delivery. This role requires regular engagement with stakeholders both within science and across the broader business.

Who are we looking for?

We do need you to have the following:

Proficiency in Microsoft products including Power Automate and PowerApps.

Understanding and experience in data engineering, encompassing ETL processes, data quality, integrity, and security.

Experience with reporting tools such as Power BI.

Experience with EPBVS (Enterprise Planning & Budgetary Cloud Service).

Strong proficiency in SQL and other data querying languages.

Proven analytical and critical thinking skills, with the ability to interpret complex data and present findings to a diverse audience

Everyone who works at AWE brings unique skills and perspectives to the table. We recognise that great people don't always 'tick every box'. That's why we focus on your potential, your fit with our values, your transferable skills as well as your experience. Even if you don't meet every point below, but you feel that this role and AWE are a great fit for you, please go ahead and apply, we'd love to receive your application.

Whilst not to be considered a tick list, we'd like you to have experience in some of the following:

Managing a diverse range of stakeholders, including senior leadership/stakeholders as customers

Growth mindset with a proactive approach to seeking opportunities for continuous improvement and efficiencies

Excellent written and verbal communication skills, with the ability to present complex information clearly and concisely to various audiences.

Understanding and experience with Data Science, including development and implementation of advanced analytics models, such as machine learning and statistical models

Knowledge of Palantir Foundry and its data integration and analytics capabilities

Understanding of how to present metrics and management information

Project management experience, with the ability to manage multiple projects and deadlines simultaneously

Some reasons we think you'll love it here:

AWE has wide range of benefits to suit you. These include:

9-day working fortnight - meaning you get every other Friday off work, in addition to 270 hours of annual leave.

Market leading contributory pension scheme (we will pay between 9% and 13% of your pensionable pay depending on your contributions).

Family friendly policies: Maternity Leave - 39 Weeks Full Pay and Paternity Leave - 4 Weeks Full Pay.

Opportunities for Professional Career Development including funding for annual membership of a relevant professional body.

Employee Assistance Programme and Occupational Health Services.

Life Assurance (4 x annual salary).

Discounts - access to savings on a wide range of everyday spending.

Special Leave Policy including paid time off for volunteering, public service (including reserve forces) and caring.

The 'Working at AWE' page on our website is where you can find full details in the 'AWE Benefits Guide'.

Important things you need to know:

You will need to obtain and maintain the necessary security clearance for the role. This will be funded by AWE. The nature of our work does mean you need to be a British Citizen who has been resident in the UK for the past 5 years in order to apply for SC clearance and 10 years for DV.

We want you to feel comfortable and able to shine during our recruitment process. Please let us know on your application form if you need any adjustments/accommodations during the process.

Our interviews typically take place over Teams and for most roles are a 1 stage process.

IF HYBRID POSSIBLE:

Hybrid working is available for this role on an informal, non-contractual basis. Typically 2 days onsite per week.

#LI-DS

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Engineering: Reshaping the Big Data Pipeline

Data engineering has become an indispensable pillar of the modern technology ecosystem. As companies gather massive troves of data—often measured in petabytes—the importance of robust, scalable data pipelines cannot be overstated. From ingestion and storage to transformation and analysis, data engineers stand at the forefront of delivering reliable data for analytics, machine learning, and critical business decisions. Simultaneously, the field of Artificial Intelligence (AI) has undergone a revolution, transitioning from niche research projects to a foundational tool for everything from predictive maintenance and fraud detection to customer experience personalisation. Yet as AI models grow in complexity—think large language models with hundreds of billions of parameters—the data volumes and computational needs escalate dramatically. The industry finds itself at an inflection point: traditional computing systems may eventually hit performance ceilings, even when scaled horizontally with thousands of nodes. Enter quantum computing, a nascent yet rapidly progressing technology that leverages quantum mechanics to tackle certain computational tasks exponentially faster than classical machines. While quantum computing is still maturing, its potential to supercharge AI workflows—often referred to as quantum-enhanced AI—has piqued the curiosity of data engineers and enterprises alike. This synergy could solve some of the biggest headaches in data engineering: accelerating data transformations, enabling more efficient analytics, and even facilitating entirely new kinds of modelling once believed to be intractable. In this article, we explore: How data engineering has evolved to support AI’s insatiable appetite for high-quality, well-structured data. The fundamentals of quantum computing and why it may transform the data engineering landscape. Potential real-world applications for quantum-enhanced AI in data engineering—from data ingestion to machine learning pipeline optimisation. Emerging career paths and skill sets needed to thrive in a future where data, AI, and quantum computing intersect. Challenges, ethical considerations, and forward-looking perspectives on how this convergence might shape the data engineering domain. If you work in data engineering, are curious about quantum computing, or simply want to stay on the cutting edge of technology, read on. The next frontier of data-driven innovation may well be quantum-powered.

Data Engineering Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data. It’s the critical lifeblood of every forward-thinking organisation, fueling everything from strategic decision-making to real-time analytics. As data volumes skyrocket and technologies mature, the UK has distinguished itself as a frontrunner in data innovation. A robust venture capital scene, government-backed initiatives, and a wealth of academic talent have created fertile ground for data-centric start-ups across the country. In this Q3 2025 Investment Tracker, we’ll delve into the newly funded UK start-ups shaping the future of data engineering. More importantly, we’ll explore the rich job opportunities that have emerged alongside these funding announcements. From building scalable ETL (Extract, Transform, Load) pipelines to architecting data warehouses and implementing advanced data governance frameworks, data engineers, architects, and analysts have an incredible array of roles to pursue. If you’re eager to elevate your career in data engineering, read on for insights into the most dynamic start-ups, their fresh capital injections, and the skill sets they’re hungry for.

Portfolio Projects That Get You Hired for Data Engineering Jobs (With Real GitHub Examples)

Data is increasingly the lifeblood of businesses, driving everything from product development to customer experience. At the centre of this revolution are data engineers—professionals responsible for building robust data pipelines, architecting scalable storage solutions, and preparing data for analytics and machine learning. If you’re looking to land a role in this exciting and high-demand field, a strong CV is only part of the puzzle. You also need a compelling data engineering portfolio that shows you can roll up your sleeves and deliver real-world results. In this guide, we’ll cover: Why a data engineering portfolio is crucial for standing out in the job market. Choosing the right projects for your target data engineering roles. Real GitHub examples that demonstrate best practices in data pipeline creation, cloud deployments, and more. Actionable project ideas you can start right now, from building ETL pipelines to implementing real-time streaming solutions. Best practices for structuring your GitHub repositories and showcasing your work effectively. By the end, you’ll know exactly how to build and present a portfolio that resonates with hiring managers—and when you’re ready to take the next step, don’t forget to upload your CV on DataEngineeringJobs.co.uk. Our platform connects top data engineering talent with companies that need your skills, ensuring your portfolio gets the attention it deserves.